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PART I

VC THEORY OF GENERALIZATION
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THE MAIN QUESTION OF LEARNING

THEORY

QUESTION:

When in set of functions {f(x)} we can minimize functional

R(f) =

∫
L(y, f(x))dP(x,y), f(x) ∈ {f(x)},

if measure P(x,y) is unknown but we are given ` iid pairs

(x1,y1), ..., (x`,y`).

ANSWER:

We can minimize functional R(f) using data if and only if

the VC-dimension h of set {f(x)} is finite.
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DEFINITION OF VC DIMENSION

Let {θ(f(x))} be a set of indicator functions
(here θ(u) = 1 if u ≥ 0 and θ(u) = 0 if u < 0).

• VC-dimension of set of indicator functions {θ(f(x))} is
equal h if h is the maximal number of vectors x1, ...,xh that
can be shattered (separated into all 2h possible subsets) us-
ing indicator functions from {θ(f(x))}. If such vectors exist
for any number h the VC dimension of the set is infinite.

• VC-dimension of set of real valued functions {f(x)} is the
VC-dimension of the set of indicator functions {θ(f(x) + b)}
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TWO THEOREMS OF VC THEORY

Theorem 1. If set {f(x)} has VC dimension h, then with
probability 1− η for all functions f(x) the bound

R(f) ≤ R`
emp(f) +

√
e2 + 4eR`

emp(f),

holds true, where

R`
emp(f) =

1

`

∑̀
i=1

L(yi, f(xi)), e = O

(
h− ln η

`

)
.

Theorem 2. Let x, w ∈ Rn. The VC dimension h of set of
linear indicator functions {θ(xTw) : ||x||2 ≤ 1, ||w||2 ≤ C} is

h ≤min(C,n) + 1
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STRUCTURAL RISK MINIMIZATION

PRINCIPLE

To find the desired approximation f`(x) in a set {f(x)}:
FIRST, introduce a structure on a set of functions {f(x)}

{f(x)}1 ⊂ {f(x)}2 ⊂ · · · {f(x)}m ⊂ {f(x)}
with corresponding VC-dimension hk

h1 ≤ h2 ≤ · · · ≤ hm ≤ ∞.
SECOND, chose the function f`(x) that minimizes the bound

R(f) ≤ R`
emp(f) +

√
e2 + 4eR`

emp(f), e = O

(
hk − ln η

`

)
.

1. over elements {f(x)}k (with VC dimension hk) and
2. the function f`(x) (with the smallest in {f(x)}k loss R`

emp(f).
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FOUR QUESTIONS TO COMPLETE

LEARNING THEORY

1. How to choose loss function L(y, f) in functional R(f)?

2. How to select an admissible set of functions {f(x)}?

3. How to construct structure on admissible set?

4. How to minimize functional on constructed structure?

The talk answers these questions for pattern recognition
problem.
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PART II

TARGET FUNCTIONAL FOR MINIMIZATION
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SETTING OF PROBLEM: GOD PLAYS DICE

ሻ𝑃(𝑦|𝑥 ሻ𝑃(𝑥

𝑓 𝑥, 𝛼 , 𝛼𝜖Λ

𝑦𝑖 𝑥𝑖

𝑦𝑖 𝑥𝑖

𝑥1, 𝑦1 , … , 𝑥𝓁, 𝑦𝓁𝑦

Object Nature

Learning Machine

𝑥

Given ` i.i.d. observations

(x1,y1), ..., (x`,y`), x ∈ X, y ⊂ {0,1}
generated by unknown P(x,y) = P(y|x)P(x) find the rule

r(x) = θ(f0(x)),

which minimizes in a set {f(x)} probability of misclassification

Rθ(f) =

∫
|y − θ(f(x))|dP(x,y)
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STANDARD REPLACEMENT OF BASIC

SETTING

Using data

(x1,y1), ..., (x`,y`), x ∈ X, y ⊂ {0,1}
minimize in the set of functions {f(x)} the functional

R(f) =

∫
(y − f(x))2dP(x,y)

(instead of functional RIθ(f) =
∫
|y − θ(f(x))|dP(x,y)).

Minimizer f0(x) of R(f) estimates condition probability
function f0(x) = P(y = 1|x). Use the classification rule

r(x) = θ(f0(x)− 0.5) = θ(P(y = 1|x)− 0.5).
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PROBLEM WITH STANDARD

REPLACEMENT

Minimization of functional R(f) in the set {f(x)} is equiva-
lent to minimization of the expression

R(f) =

∫
(y − f(x))2dP(x,y) =

∫
[(y − f0(x)) + (f0(x)− f(x))]2dP(x,y)

where f0(x) minimizes R(f). This is equivalent to minimiza-
tion

R(f) =

∫
(y − f0(x))

2dP(x,y)+∫
(f0(x)− f(x))2dP(x) + 2

∫
(y − f0(x))(f0(x)− f(x))dP(x,y).

ACTUAL GOAL IS: USING ` OBSERVATIONS TO
MINIMIZE THE SECOND INTEGRAL, NOT SUM OF

LAST TWO INTEGRALS.
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DIRECT ESTIMATION OF CONDITIONAL

PROBABILITY

1. When y ⊂ {0,1} the conditional probability P(y = 1|x) is
defined by some real valued function 0 ≤ f(x) ≤ 1.

2. From Bayesian formula

P(y = 1|x)p(x) = p(y = 1,x)

follows that any function G(x− x′) ∈ L2 defines equation∫
G(x− x′)f(x′)dP(x′) =

∫
G(x− x′)dP(y = 1,x′) (∗)

which solution is conditional probability f(x) = P(y = 1|x).

3. To estimate conditional probability means to solve the
equation (*) when P(x) and P(y = 1,x) are unknown but data,

(x1,y1), ..., (x`,y`)

generated according to P(y,x), are given.

4. Solution of equation (*) is ill-posed problem.
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MAIN INDUCTIVE STEP IN STATISTICS

Replace the unknown Cumulative Distribution Function (CDF)
P(x), x = (x1, ...,xn))T ∈ Rn with it estimate P`(x): The Empir-
ical Cumulative Distribution Function (ECDF)

P`(x) =
1

`

∑̀
i=1

θ{x− xi}, θ{x− xi} =
n∏

k=1

θ{xk − xk
i }

obtained from data

x1, ...,x`, xi = (x1
i , ...,x

n
i )

T,

The main theorem of statistics claims that ECDF converges
to actual CDF uniformly with fast rate of convergence. The

following inequality holds true

P{sup
x
|P(x)−P`(x)| > ε} < 2 exp{−2ε2`}, ∀ε.
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TWO CONSTRUCTIVE SETTINGS OF

CLASSIFICATION PROBLEM

1.Standard constructive setting: Minimization of functional

Remp(f) =

∫
(y − f(x))2dP`(x,y),

in a set {f(x)} using data (x1,y1), ..., (x`,y`) leads to

Remp(f) =
1

`

∑̀
i=1

(yi − f(xi))
2, f(x) ∈ {f(x)}.

• • •
2. New constructive setting: Solution of equation∫

G(x− x′)f(x′)dP`(x
′) =

∫
G(x− x′)dP`(y = 1,x′),

using data leads to solution in {f(x)} the equation

1

`

∑̀
i=1

G(x− xi)f(xi) =
1

`

∑̀
j=1

yjG(x− xj), f(x) ∈ {f(x)}.
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NADARAYA-WATSON ESTIMATOR OF

CONDITIONAL PROBABILITY

It is known Nadaraya-Watson estimator of P(y = 1|x):

f(x) =

∑`
i=1 yiG(x− xi)∑`
i=1 G(x− xi)

,

where special kernels G(x− xi) (say, Gaussian) are used.
This estimator is the solution of ”corrupted” equation

1

`

∑̀
i=1

G(x− xi)f(x) =
1

`

∑̀
i=1

yiG(x− xi)

(which uses special kernel) rather than the obtained equation

1

`

∑̀
i=1

G(x− xi)f(xi) =
1

`

∑̀
j=1

yjG(x− xj).

(which is defined for any kernel G(x− x′) from L2).
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WHAT MEANS TO SOLVE THE EQUATION

To solve the equation

1

`

∑̀
i=1

G(x− xi)f(xi) =
1

`

∑̀
j=1

yjG(x− xj)

means to find the function in {f(x)} minimizing L2-distance

R(f) =

∫ ∑̀
i=1

G(x− xi)f(xi)−
∑̀
j=1

yjG(x− xj)

2

dµ(x).

Simple algebra leads to expression

RV(f) =
∑̀
i,j=1

(yi − f(xi))(yj − f(xj))v(xi,xj),

where values v(xi,xj) are

v(xi,xj) =

∫
G(x− xi)G(x− xj)dµ(x), i, j = 1, ..., `.

Values v(xi,xj) form V-matrix.
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THE V-MATRIX ESTIMATE

1. For µ(x) = P(x) elements v(xi,xj) of V-matrix are

v(xi,xj) =

∫
G(x− xi)G(x− xj)dP(x).

Using empirical estimate P`(x) instead of P(x) we obtain
the following estimates of elements of V-matrix

v(xi,xj) =
1

`

∑̀
s=1

G(xs − xi)G(xs − xj).

2. For µ(x) = x, x ∈ (−1,1) and G(x− x′) = exp{−0.5δ2(x− x′)2},
v(xi,xj) =

exp{−δ2(xi − xj)
2}{erf [δ(1 + 0.5(xi + xj))] + erf{δ(1− 0.5(xi + xj))]}.



18
LEAST V-QUADRATIC FORM METHOD AND

LEAST SQUARES METHOD

Let (x1,y1), ..., (x`,b`) be training data. Using notations:

Y = (y1, ...,y`)
T, F(f) = (f(x1), ..., f(x`))

T, V = ||v(xi,xj)||
we can rewrite functional

RV(f) =
∑̀
i,j=1

(yi − f(xi))(yj − f(xj))v(xi,xj),

in matrix form

RV(f) = (Y − F(f))TV(Y − F(f)),

We call this functional Least V-quadratic functional.

Identity matrix I instead of V forms Least Squares functional

RI(f) = (Y − F(f))T(Y − F(f)),
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PART III

SELECTION OF ADMISSIBLE SET OF FUNCTIONS
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STRONG AND WEAK CONVERGENCE

Functions f`(x) ∈ L2 have two modes of convergence:
1. Strong mode of convergence (convergence of functions)

lim
`→∞

∫
(f`(x)− f0(x))

2dµ(x) = 0.

2. Weak mode of convergence (convergence of functionals)

lim
`→∞

∫
f`(x)φ(x)dµ(x) =

∫
f0(x)φ(x)dµ(x), ∀φ(x) ∈ L2

(convergence for all possible functions φ(x) ∈ L2.)

• Strong mode of convergence implies weak convergence:(∫
(f`(x)− f0(x))φ(x)dµ(x)

)2

≤
∫
(f`(x)− f0(x))

2dµ(x)

∫
φ2(x)µ(x).

• For functions f`(x) belonging to compact weak mode of
convergence implies strong mode of convergence.
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WEAK CONVERGENCE TO CONDITIONAL

PROBABILITY FUNCTIONS P(y = 1|x)

Weak mode convergence of sequence of functions f`(x) to
function f0(x) = P(y = 1|x) means equalities

lim
`→∞

∫
φ(x)f`(x)dP(x) =

∫
φ(x)P(y = 1|x)dP(x) =

∫
φ(x)dP(y = 1,x)

for all φ(x) ∈ L2.

Let us call set of m functions φ1(x), ..., φm(x) from L2 the
chosen predicates. Let us call the subset of functions {f(x)}
for which the following m equalities hold true∫

φk(x)f(x)dP(x) =

∫
φk(x)dP(y = 1,x), k = 1, ...,m.

the admissible set of functions (defined by the predicates).



22
ADMISSIBLE SUBSETS FOR ESTIMATION
CONDITIONAL PROBABILITY FUNCTION

Replacing P(x), P(y = 1,x) with P`(x), P`(y = 1,x) we obtain

1

`

∑̀
i=1

φk(xi)f(xi) =
1

`

∑̀
i=1

yiφk(xi), k = 1, ...,m.

In the matrix notations

Y = (y1, ...,y`)
T, F(f) = (f(x1), ..., f(x`))

T, Φk = (φk(x1), ...φk(x`))
T

we obtain that:

The admissible set of functions {f(x)} satisfies equalities

ΦT
k F(f) = ΦT

k Y, k = 1, ...,m.

We call these equalities statistical invariants for P(y = 1|x).
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DUCK TEST, STATISTICAL INVARIANTS,

PREDICATES, AND FEATURES

THE DUCK TEST LOGIC

”If it looks like a duck, swims like a duck, and quacks like a
duck , then it probably is a duck”. (English proverb.)

STATISTICAL INVARIANTS

1

`

∑̀
i=1

φk(xi)f(xi) =
1

`

∑̀
i=1

yiφk(xi), k = 1, ...,m

(or ΦT
k F(f) = ΦT

k Y, k = 1, ...,m in vector notations)
collect set of admissible functions {f(x)} which ”identify” an-
imal as a duck if it ”looks, swims, and quacks like a duck”.

PREDICATES AND FEATURES

Concepts of predicates and features are very different:

• With increasing number of predicates the VC dimension
of admissible set of functions {f(x)} DECREASES.
• With increasing number of features the VC dimension

of admissible set of functions {f(x)} INCREASES.
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EXACT SETTING OF COMPLETE LEARNING

PROBLEM

• The complete solution of classification problem requires:

In a given set of functions {f(x)} to minimize functional

RV(f) = (Y − F(f))TV(Y − F(f)),

subject to constraints (statistical invariants)

ΦT
k F(f) = ΦT

k Y, k = 1, ...,m.

We call this conditional minimization model of learning

Learning Using Statistical Invariants (LUSI).

• Classical methods require in a given (specially constructed)
subset of functions {f(x)} to minimize the functional

RI(f) = (Y − F(f))T(Y − F(f)).
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APPROXIMATE SETTING OF COMPLETE

LEARNING PROBLEM

In this setting minimization of the functional

RV(f) = (Y − F(f))TV(Y − F(f)),

on the set of functions {f(x)} satisfying m constraints

ΦT
s F(f) = ΦT

s Y, s = 1, ...,m

is replaced with minimization of the functional

RVP(f) = τ̂ (Y − F(f))TV(Y − F(f)) +
τ

m

m∑
s=1

(
ΦT

s F(f)−ΦT
s Y
)2
,

where τ̂ , τ ≥ 0, τ̂ + τ = 1. This functional can be rewritten as

RVP(f) = (Y − F(f))T(τ̂V + τP)(Y − F(f)),

where (`× `) matrix P defines predicates covariance

P =
1

m

m∑
s=1

ΦsΦ
T
s .
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PART IV

COMPLETE SOLUTION IN REPRODUCING KERNEL
HILBERT SPACE (RKHS)
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IMPORTANT FACTS FROM RKHS 1.

1. RKHS is set of functions {f (x)} for which

(K(x,x′), f(x′)) = f(x), (K(x,x′) is Mercer kernel).

2. Mercer kernel is defined by orthonormal functions ψk(x)

K(x,x′) =
∞∑

i=1

λiψi(x)ψi(x
′), λi > 0, λt −→t→∞= 0.

3. Set of functions

fc(x) =
∞∑

i=1

ciψi(x)

with inner product (and norm)

(fc(x), fc∗(x)) =
∞∑

i=1

cic
∗
i

λi

(
||fc(x)||2 =

∞∑
i=1

c2
i

λi

)
forms RKHS of kernel K(x,x′).
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IMPORTANT FACTS FROM RKHS 2.

4. REPRESENTER THEOREM. Minimum of functional

RV(f) = (F(f)−Y)TV(F(f)−Y)

in subset of RKHS with ||f(x)||2 ≤ C has representation

f0(x) =
∑̀
i=1

atK(xi,x) = ATK(x), (∗)

where we denoted A = (a1, ..., a`)
T, K(x) = (K(x1,x), ...,K(x`,x))

T

5. Square of norm of function f(x) in form (*) is

||f(x)||2 = ATKA, K = ||K(xi,xj)||, F(f) = KA.

6. Subset of functions from RKHS with bounded norm
ATKA ≤ C has finite VC dimension (the smaller C, the smaller
is VC dimension). By controlling C, one controls both: the
VC dimension of subset of functions and their smoothness.

Structure defined by C is the key in implementation SRM
principle for functions belonging to RKHS.



29
CONDITIONAL MINIMIZATION IN RKHS:

EXACT LUSI SOLUTION

For RKHS we have F(f) = KA. Minimum of the functional

RV(f) = (KA−Y)TV(KA−Y),

subject to m constraints

ΦT
k KA = ΦT

k Y, k = 1, ...,m

and constraint
ATKA ≤ C

has unique solution of the form

f`(x) = AT
LUSIK(x),

where

ALUSI = AV −
m∑

s=1

µsAs,

AV = (VK + γcI)
−1VY, As = (VK + γcI)

−1Φs

Parameters µs are solution of linear equations
m∑

s=1

µsA
T
s KΦs = (KAV −Y)TΦs, s = 1, ...,m.
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UNCONDITIONAL MINIMIZATION IN RKHS
(SOLUTION OF APPROXIMATE SETTING).

Minimum of functional

RVVw(f) = (KA−Y)T(τ̂V + τP)(KA−Y)

in the set of functions {f(x)} belonging to RKHS of kernel
K(x,x

′) with bounded norm

ATKA ≤ C

has unique solution of the form

f0(x) = AT
VPK(x),

where
AVP = ((τ̂V + τP)K + γcI)

−1(τ̂V + τP)Y.
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SVM AND LUSI-SVM ESTIMATIONS IN

RKHS

• SVM: Given data

(x1,y1), ..., (x`,y`)

find in RKHS the function f(x) = ATK(x) with norm

||f(x)||2 = ATKA ≤ C (∗)
that minimizes losses

L(A) =
∑̀
i=1

∣∣yi −ATK(xi)
∣∣

• LUSI-SVM: Given data find in RKHS the function
f(x) = ATK(x) with bounded norm (*) that minimizes

L(A) = τ

m∑
s=1

∣∣ATKΦs −YTΦs

∣∣ + τ̂

m+∑̀
i=m+1

∣∣yi −ATK(xi)
∣∣ ,

where τ + τ̂ = 1, τ > 0, τ̂ > 0.
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LUSI-SVM RSTIMATOR

LUSI-SVM method selects in set ATKA ≤ C the function

f(x) =
∑̀
i=1

aiK(xi,x) = ATK(x), where

A =

m∑
t=1

δtΦt +

m+∑̀
t=m+1

δtΦt.

To find δt one has to maximize the functional

R(δ) =

m+∑̀
i=1

δiΦ
T
s Y − 1

2

m+∑̀
r,s=1

δrΦ
T
r KΦsδs

subject to constraints

−τ̂ γ∗c ≤ δt ≤ τ̂ γ∗c, t = (m + 1), ..., (m + `),

−τγ∗c ≤ δt ≤ τγ∗c, t = 1, ...,m, τ̂ + τ = 1,

where we denoted

Φm+t = (0, ...,1, ...,0))T, t = m + 1, ...,m + `.



33
LEARNING DOES NOT REQUIRE BIG DATA

According to Representer Theorem, the optimal solution
of learning problem in RKHS have properties:

1. It is defined by linear parametric functions in form of ex-
pansion on kernel functions (i.e optimal solution belongs
to one layer network, not multi-layers network).

2. Observation vectors x1, ..,x` and kernel K(x,x′) define basis
of linear expansion for optimal ` parametric solution.

3. SVM: to control VC dimension uses data to find both the
basis of expansion and the parameters of solution.

4. LUSI-SVM: to estimate unknown parameters of solution,
adds to ` training pairs m pairs (KΦs,Y

TΦs) obtained using
predicates. When τ ≈ 1 it uses just these m pairs.

5. Since any functions from Hilbert space can be used as
predicates φs(x), there exist one or several ”smart” predi-
cates defining pairs (KΦs,Y

TΦs) to form optimal solution.
—
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ILLUSTRATION

I: 0.3756 V : 0.1432
I&I: 0,2166 V&I: 0.1017
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ILLUSTRATION

I: 0.3212 V : 0.1207
I&I: 0.1808 V&I: 0.0778
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ILLUSTRATION

I: 0.1672 V : 0.0689
I&I: 0.1072 V&I: 0.0609
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MULTIDIMENSIONAL EXAMPLES

TABLE 1

Data set Training Features SVM V&I
Diabetes 562 8 25.94% 22.73%
MAGIC 1005 10 19.03% 15.10%
WPBC 134 33 25.48% 23.02%
Bank Marketing 445 16 12.06% 10.58%

TABLE 2

Diabetes MAGIC
Training SVM V&I9 Training SVM V&I

71 28.42 27.52% 242 20.51 17.35%
151 26.97% 24.56% 491 20.93% 15.91%
304 26.35% 23.78% 955 18.89% 15.19%
612 25.43% 22.60% 1903 18.03% 14.25%
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NEW INVARIANT FOR DIABETES

ψ∗(x) =

{
1, if x ∈ B (selected box)
0, otherwise

BMI

G
lu
co
se

healthy

sick

I&I(+∗) decreases errors rate from 22.73% to 22.07%.
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WAY TO FIND NEW INVARIANT

Find a situation (the box B in Fig.), where the existing
solution (the approximation P`(y = 1|x)) contradicts the ev-
idence (contradicts invariant for predicate φ(x) = 1 inside
the box) and then modify the solution (obtain a new approx-
imation P(n+1)(y = 1|x)) which resolves this contradiction.

This is the same principle that is used in physics to dis-
cover the laws of Nature. To discover laws of the Nature
physicists first trying to find a situation where existing the-
ory contradicts observations (The invariants fail. Theoretical
predictions do not supported by experiments). Then they
trying to reconstruct theory to remove the contradictions.
They construct a new approximation of theory which does
not contradict the observed reality – keeps all invariants.

The most important (and most difficult) part in scientific
discovery is to find contradictive situation.
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PART V

LUSI APPROACH IN NEURAL NETWORKS
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VP-BACK PROPAGATION ALGORITHM

• Neural Networks searching for minimum of functional

RI(f) = (F(f)−Y)T(F(f)−Y),

in the set of piece-wise linear functions {f} realized by neural
network. It uses gradient descent procedure of minimization
(called Back Propagation). Procedure has three steps:
1. Forward propagation. 2. Backward propagation. 3. Up-
dates of parameters.

• To minimize in the same set of functions the VP-form

RVP(f) = (F(f)−Y)T(τ̂V + τP)(F(f)−Y),

using back propagation technique, one has to modify just
backward step: instead of vector E = ((y1 − u1), ..., (y` − u`))

T,
(where u1, ...,u` are outputs of the last layer (last unit) on
vectors x1, ...,x`) one has back propagate modified vector

Ê = (τ̂V + τP)E.
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SCHEME OF VP-BACK PROPAGATION

ALGORITHM

1. Forward propagation step. Given initial weights w of Net,
propagate training vectors xi through all hidden layers.

2. Border conditions for back propagation. Let ui be value
corresponding to vector xi propagated on the last layer
(unit) and ei = (yi − ui) be difference between target value
yi and obtained value ui. Consider vector E = (e1, ..., e`)

T.

3. Back propagation step. Back propagate vector

Ê = (τ̂V + τP)E, where E = (e1, ..., e`)
T.

4. Weights updating step. Compute gradient of weights and
update the weights of the network.
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EXAMPLE: MNIST DIGIT RECOGNITION

Minimization of R(f) = (Y − F(f))T(τ̂V + τP)(Y − F(f)).
2D image of digit ui(x

1,x2). Predicate: φ(ui) = 1.

Experiment settings: V = I, ` = 1, 000 (100 per class). Batch 6.

 2

 3

 4

 5

 0  10  20  30  40  50  60  70  80  90  100

T=0, 96.9%
T=0.05, 97.1%

Error rate: DNNet – 3.1%, VP-NNet – 2.9%
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EXAMPLE: MNIST DIGIT RECOGNITION

Minimization of R(f) = (Y − F(f))T(τ̂V + τP)(Y − F(f)).

Predicate: φ(ui) =
∫ 1

0 ui(x
1,x2) cos2πx1dx1dx2, (u(x1,x2) is a digit).

Experiment settings: V = I, ` = 1, 000 (100 per class). Batch 6.

 3

 4

 5

 6

 0  20  40  60  80  100  120  140

avg-grad(6)
Tau(10)*P[cos 2*Pi*x*pca[0] ]

Error rate: DNNet – 3.4%, VP-NNet – 3.3%
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EXAMPLE: MNIST DIGIT RECOGNITION

Minimization of R(f) = (Y − F(f))T(τ̂V + τP)(Y − F(f)).

φm,n(ui) =

∫ 1

0

ui(x
1,x2) cosmπx1 cosnπx2dx1dx2, m,n = 1,2,3,4.

Experiment settings: V = I, ` = 1, 000 (100 per class). Batch 6.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  20  40  60  80  100  120  140

avg-grad(6)
Tau(10)*P[FFT 4x4]

Error rate: DNNet – 3.4%, VP-NNet – 2.8%
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STATISTICAL PART OF LEARNING THEORY

IS COMPLETED

Theory found that:

1. The functional for minimization defines V-quadratic form

R(f) = (Y − F(f))TV(Y − f(f)). (1)

2. In RKHS, where F(f) = KA, the admissible set of functions
is defined by invariants for given m predicate functions φk:

ΦT
k KA = ΦT

k Y, k = 1, ...,m. (2)

3. For RKHS the structure in SRM method is defined by the
values of norm of functions from RKHS

ATKA ≤ C, (3)

which satisfies (2).

4. There exist unique (closed form) solution for the problem
of minimization (1) subject to constraints (2) and (3).

The only question left is ”How to choose set of predicates”?
Answer to this question forms intelligent content of learning.
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PART VI

EXAMPLES OF PREDICATES



48
EXAMPLES OF GENERAL TYPE

PREDICATES

∑̀
i=1

P`(y = 1|xi)φ(xi) =
∑̀
i=1

yiφ(xi) (∗).

• • •
1. Predicate φ(x) = 1 in (*) collects functions for which

Expected number of elements of class y = 1 computed
using P`(y = 1|x) equal to the number of training

examples of the first class.

2. Predicate φ(x) = x in (*) collects functions for which

Expected center of mass of vectors x of class y = 1
computed using P`(y = 1|x) coincides with center of

mass of training examples of the first class.

3. Predicate φ(x) = xxT,x ∈ Rn collects functions for which

Expected 0.5n(n + 1) values of covariance matrix
computed using P`(y = 1|x) coincide with values of

covariance matrix computed for vectors x of the first
class.
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EXAMPLES OF PREDICATES FOR 2D

IMAGES {u(x1,x2)}

Let 2D functions

u(x1,x2), 0 ≤ x1,x2 ≤ π

describe images and let ` pairs

(u1(x
1,x2),y1), ..., (u`(x

1,x2),y`),

form the training set.

1. Predicates

φr,s(ui) =

∫ π

0

∫ π

0

ui(x
1,x2) cos rx1 cos sx2dx1dx2, r, s = 1, ...,N

define coefficients ar,s of cosines expansion of image ui(x
1,x2).

2. For a given function g(x1,x2) predicate

φ(ui,xµ,xν) =

∫ ∞
−∞

∫ ∞
−∞

ui(x
1,x2)g(x1 − x1

µ,x
2 − x2

ν)dx1dx2,

defines value of convolution at point (x1
µ,x

2
ν).
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INSTRUMENTS FOR SPECIAL PREDICATES

LIE DERIVATIVES

Let image is defined by differentiable 2D function u(x1,x2).
Consider small linear transformations of 2D space (x1,x2) ∈ R2:

tα

(
x1

x2

)
=⇒

(
x1 + a1x

1 + a2x
2 + a3

x2 + a4x
2 + a5x

1 + a6

)
For small ak function u(ta(x

1,x2) in space t(x1,x2) has the
following representation in non-transformed space (x1,x2)

u(tα(x
1,x2)) ≈ u(x1,x2) +

6∑
k=1

akLku(x
1,x2),

where Lku(x
1,x2) are the so-called Lie derivatives.
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ILLUSTRATION

Digit 2 in transformed space and in original space corrected
by Lie operator of rotation

From paper by P. Simard et al. ”Transformation
invariance...”
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LIE OPERATORS

1. Horizontal translation ta(x
1,x2) −→ (x1 + a,x2)

Lie operator is L1 = ∂
∂x1

2. Vertical translation ta(x
1,x2) −→ (x1,x2 + a)

Lie operator is L2 = ∂
∂x2

3. Rotation tα(x
1,x2) −→ (x1 cosα− x2 sinα, x1 sinα + x2 cosα)

Lie operator is L3 = x2 ∂
∂x1 − x1 ∂

∂x2

4. Scaling ta(x
1,x2) −→ (x1 + ax1,x2 + ax2).

Lie operator is L4 = x1 ∂
∂x1 + x2 ∂

∂x2

5. Parallel hyperbolic ta(x
1,x2) −→ (x1 + ax1, x2 − ax2)

Lie operator is L5 = x1 ∂
∂x1 − x2 ∂

∂x2

6. Diagonal hyperbolic ta(x
1,x2) −→ (x1 + ax2, x2 + ax1)

Lie operator is L6 = x2 ∂
∂x1 + x1 ∂

∂x2
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ILLUSTRATION

Digit 3 and it transformations using 5 Lie operators
(scaling, rotation, expansion-compression, diagonal

expansion-compression, thickening)

From paper by P. Simard et al. ”Transformation
invariance...”
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INVARIANTS WITH RESPECT TO LINEAR

TRANSFORMATIONS.

Let ui(x
1,x2

i ) be an image ((n× n) matrix in pixel space
(x1.x2)). Consider six predicate matrixes

φk(ui) = Lkui(x
1,x2), k = 1, ...,6

and corresponding six sets of invariants∑̀
i=1

φk(ui)P`(y = 1|xi) =
∑̀
i=1

yiφk(ui), k = 1, ...,6.

Adding these equalities to LUSI constraints one tries to
estimate rule P`(y = 1|x) which keeps invariants with respect
to Lie transformations.
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TANGENT DISTANCE

Consider two image functions u1(x
1,x2) and u2(x

1,x2).
Let us introduce two six parametric sets of functions

{u1(x
1,x2)}a = u1(x

1,x2) +

6∑
k=1

akLku1(x
1,x2)

{u2(x
1,x2)}b = u2(x

1,x2) +

6∑
k=1

bkLku2(x
1,x2)

defined by small parameters ak and bk k = 1, ...,6.
Tangent distance between functions u1 and u2 is the value

dtang(u1,u2) = min
a,b
||{u1(x

1,x2)}a − {u2(x
1,x2)}b|| =

min
a,b

∣∣∣∣∣
∣∣∣∣∣u1(x

1,x2) +

6∑
k=1

akLku1(x
1,x2)− u2(x

1,x2)−
6∑

k=1

bkLku2(x
1,x2)

∣∣∣∣∣
∣∣∣∣∣.

• Predicate dtang(u,u0) defines tangent distance from u to u0.
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EXAMPLES OF PREDICATES THAT DEFINE

DEGREE OF SYMMETRIES

1. Predicate defining degree of vertical symmetry f(x)

u(x) =

 x11 · · · x1n... . . . ...
xn1 · · · xnn

 , uT1(x) =

 xn1 · · · xnn... . . . ...
x11 · · · x1n

 .
Predicate defines tangent distance dtang(f , fT1).

2. Predicate defining degree of horizontal symmetry f(x)

u(x) =

 x11 · · · x1n... . . . ...
xn1 · · · xnn

 , uT2(x) =

 x1n · · · x11... . . . ...
xnn · · · xn1

 .
Predicate defines tangent distance dtang(u,uT2).

3. Predicate defining degree of horizontal antisymmetry f(x)

u(x) =

 x11 · · · x1n... . . . ...
xn1 · · · xnn

 , uT3(x) =

 xnn · · · xn1... . . . ...
x1n · · · x11

 .
Predicate defines tangent distance dtang(u,uT3).
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CONCLUSIVE REMARKS

• Complete statistical methods of learning require, using
structural risk minimization principle, in a given set of func-
tions {f(x)} minimize functional

RV(f) = (Y − F(f))TV(Y − F(f))

subject to invariant constraints

ΦT
s F(f) = ΦT

s Y.

• LUSI method provides unique solution of this problem for
functions from RKHS and approximation for Neural Nets.

• Further progress in learning theory goes beyond statistical
reasoning. It goes in the direction of search of predicates
which form basis for understanding of problems existing in
the World (see Plato–Hegel–Wigner line of philosophy).

• Predicates are abstract ideas, while invariants that are
builded using them form elements of solution. These two
concepts reflect essence of intelligence, not just its imitation.
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THE CHALLENGE

Using 60,000 training examples of MNIST digit recognition
problem (6,000 per/class) DNN achieved ≈ 0.5% test error.

1. Find predicates which will allow you to achieve the same
level of test error using just 600 examples (60/per class).

2. Find a small set of basic predicates to achieve this goal.
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PLATO-HEGEL-WIGNER LINE OF

PHILOSOPHY

In 1928 Vladimir Propp published book ”Morphology of
the Folktale” where he described 31 predicates that allow
to synthesize Russian folk tales. Later his morphology has
been successfully applied to other types of narrative, be it in
literature, theater, film, television series, games, etc. (al-
though Propp applied it only to the wonder or fairy tale).
(See Wikipedia: Vladimir Propp.)

The idea is that World of Ideas contains small amount of
ideas (predicates) that can be translated in World of Things
by many different invariants.

Propp found 31 predicates which describe different actions
of people in Real World. Probably there exist a small amount
of predicates that describe 2D Real World images. The chal-
lenge is to find them (to understand World of 2D images).


