
1520-9202/13/$31.00 © 2013 IEEE P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y computer.org/ITPro	 29

SecuritySecurity: DARPA

Lex Fridman, Ariel Stolerman, and Sayandeep Acharya, Drexel University 
Patrick Brennan and Patrick Juola, Juola & Associates

Rachel Greenstadt and Moshe Kam, Drexel University

The authors apply a decision fusion architecture on a collection 
of behavioral biometric sensors using keystroke dynamics, mouse 
movement, stylometry, and Web browsing behavior. They test this 
active authentication approach on a dataset collected from 19 
individuals in an office environment.

I
dentity verification for access control presents 
a trade-off between maximizing the probabil-
ity of intruder detection and minimizing the 
cost for the legitimate user in terms of distrac-

tions and hardware requirements. In recent years, 
researchers have extensively explored behavioral 
biometric systems to address this challenge.1 
These systems rely on input devices, such as the 
keyboard and mouse, that are already commonly 
available with most computers. However, their 
performance in terms of detecting intruders and 
maintaining a low-distraction human-computer 
interaction (HCI) experience has been mixed.2

We consider the real-time application of this 
technology for active authentication. As a user 

begins interacting with the machine, the clas-
sification system collects behavioral biometrics 
from the interaction and continuously verifies 
that the current user has access permission on 
the machine. This approach adds an extra layer 
of distraction-less access control in environments 
where a computer is at a risk of being intermit-
tently accessed by unauthorized users.

We employ four classes of biometrics: key-
stroke dynamics, mouse movement, stylometry, 
and Web browsing. Depending on the task in 
which the user is engaged, some of the biomet-
ric sensors might provide more data than oth-
ers. For example, as the user browses the Web, 
the mouse and Web browsing sensors will be 
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actively flooded with data, while the keystroke 
dynamics and stylometry sensors might only 
get a few infrequent updates. This observation 
motivates the recent work on multimodal au-
thentication systems, which fuses together deci-
sions from multiple classifiers.3 Our approach 
is to apply the Chair-Varshney decision-fusion 
rule4 to combine available multimodal deci-
sions. Furthermore, we are motivated by Kamal 
Ali and Michael Pazzani’s work,5 which shows 
that using distinctly different classifiers (that 
is, different behavioral biometrics) helps reduce 
error rates.

Biometric Sensors
The sensors we consider here span different 
levels and directions for profiling: linguistic 
style (stylometry), mouse movement patterns, 
keystroke dynamics, and Web browsing behav-
ior. Each type of sensory input has a different 
requirement in terms of the volume of input 
data, nature of the collected data (mouse events, 
keystrokes, and different usage statistics), and 
performance.

Following the commonly used classification 
of biometrics, we refer here to the mouse and 
keystroke dynamics sensors as “low-level” and 
to the website domain frequency and stylometry 
sensors as “high-level.” The low-level sensors we 
used were

•	M1: the mouse curvature angle,
•	M2: the mouse curvature distance,
•	M3: the mouse direction,
•	 K1: the keystroke interval time, and
•	 K2: the keystroke dwell time.

For the high-level sensors, we used

•	W1: the website domain visit frequency,
•	 S1: stylometry with 1,000 characters and a 

30-minute window,
•	 S2: stylometry with 500 characters and a 

30-minute window,
•	 S3: stylometry with 400 characters and a 

10-minute window, and
•	 S4: stylometry with 100 characters and a 

10-minute window.

We collected the behavioral biometrics data in 
a simulated work environment. Specifically, we 

put together an office space. During each of 
the four weeks of data collection, we hired five 
temporary employees, each of whom worked 
40 hours. Each day, the employees were as-
signed various reading, writing, and brows-
ing tasks. Data files on their interaction with 
the mouse and the keyboard were produced 
by two  tracking applications. For the 19 us-
ers included in this study, we collected close 
to 1.2 million keystroke events and 10 million 
“mouse move” events.

Low-Level Metrics
Keystroke dynamics have been extensively stud-
ied in behavioral biometrics,6 ranging from the 
simple metrics of key press interval7 and dwell 
times8 to multikey features, such as trigraph 
duration with an allowance for typing errors.2 
Mouse movement dynamics have also recently 
received considerable attention.9

The low-level metrics of keystroke and 
mouse dynamics detectors, along with the do-
main visit frequency detector, all use support 
vector machines (SVMs). Here, we considered 
three metrics: the curvature angle (M1), cur-
vature distance (M2), and movement direction 
(M3).9 For keyboard dynamics, we chose two 
of the most commonly used keystroke dynam-
ics features: the interval between the release of 
one key and the press of another (K1) and the 
dwell time between the press of a key and its 
release (K2).

Stylometry
Authorship attribution based on linguistic 
style, or stylometry, is a well-researched field.10 
Typically, stylometry is applied to written lan-
guage to identify an anonymous author by min-
ing the text for linguistic features. The feature 
space is potentially boundless, with frequency 
measurements or numeric evaluations based 
on features across different levels of the text, 
including function words, grammar, and char-
acter n-grams.

The feature set we used (denoted the “AA” fea-
ture set), is a variation of the Writeprints feature 
set,11 which includes a vast range of linguistic 
features across different levels of text. This rich 
linguistic feature set is aimed at capturing the 
user’s writing style. With the special-character 
placeholders, some features capture aspects of 
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the user’s style usually not found in standard 
authorship problem settings.

For classification, we used sequential mini-
mal optimization (SMO) SVMs with polynomial 
kernel, available in WEKA (the Waikato Envi-
ronment for Knowledge Analysis).12 SVMs are 
commonly used for authorship attribution13 and 
documented to achieve high performance and 
accuracy.

Web Browsing Behavior
The research literature also includes many 
studies of Web browsing behavior,14 but not in 
the context of active authentication. We used 
the same SVM classifier as for low-level sen-
sors, and the feature vector of the visit frequen-
cy to the 20 most-visited websites in the dataset. 
The top five were google.com (7 percent), bing.
com (7 percent), facebook.com (5 percent), ya-
hoo.com (4.1 percent), and wikipedia.org (2.9 
percent). The visit frequency of any one of these 
popular websites isn’t a good classification 
feature. However, taken together, the 20-di-
mensional feature vector forms a sufficiently 
representative profile of a user for continuous 
authentication.

Decision Fusion
The motivation for using multiple sensors to 
detect an event is to harness the sensors’ pow-
er to provide an accurate joint assessment of 
the environment, which a single sensor might 
not be able to provide. Robert Tenney and Nils 
Sandell have described decision fusion with 
distributed sensors,15 studying several paral-
lel decision architectures. Furthermore, Moshe 
Kam, Wei Chang, and Qiang Zhu have de-
scribed a distributed binary detection system 
that comprises n local detectors, each making 
a decision about a binary hypothesis (H0, H1), 
and a decision-fusion center (DFC) that uses 
these local decisions {u1, u2, ..., un} for a global 
decision about the hypothesis.16 The ith detec-
tor collects K observations before it makes its 
decision, ui. The decision is ui = 1 if the detec-
tor decides in favor of H1 (decision D1), and ui 
= –1 if it decides in favor of H0 (decision D0). 
The DFC collects the n decisions of the local 
detectors through ideal communication chan-
nels and uses them to make the global decision 
(D0 or D1).

Z. Chair and P.K. Varshney developed an 
optimal fusion rule for a parallel binary detec-
tor architecture with respect to a Bayesian cost4 
(here we use the probability of error as the cost). 
They  assumed that the local detectors were 
predesigned and fixed (with known probability of 
detection and probability of false alarm) and that 
local observations were statistically independent, 
conditioned on the hypothesis. Moreover, it was 
assumed that the a priori probabilities P0 = P(H0) 
and P1 = P(H1) = 1 – P(H0) were known. Using its 
own rule, the local sensor detector collects data 
from its environment and decides on D0 (ui = –1) 
or D1 (ui = 1). A DFC combines these local deci-
sions using the rule
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Kam and his colleagues developed expressions 
for the global performance of the distributed 
system just described.16

Figure 1a shows the four representative 
combinations of 10 low- and high-level sen-
sors described earlier and the FAR and FRR 
rates resulting from fusing these sensors. A 
checkmark designates which of the sensors is 
included in the fusion for that row. There are 
1,024 possible combinations. We selected these 
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four to highlight the marginal contribution of 
stylometry and Web browsing modalities when 
fused with the low level modalities. The plots 
Figures 1b–1e indicate that stylometry contrib-
utes more to reducing the error rates than Web 
browsing.

I n attempting to address the challenge of active 
authentication, we learned that the global deci-
sion has a lower probability of error than that 

of the best sensor operating by itself. Future work 
will be geared toward open world authentication 
on a larger data set with a more expansive portfo-
lio of metrics.�
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