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Abstract— Cognitive radios permit dynamic control of physical
layer resources such as transmission power and constellation
size; these degrees of freedom can be employed to achieve
significant improvements in network throughput above that
obtainable using conventional radios (with fixed transmission
power and constellation size). In this paper we present a unified
framework for coordinated resource allocation across the entire
protocol stack: physical, medium access, network, and transport
layers. Our focus is on demonstrating that joint optimization
over transmission power, constellation size, scheduling, and
multicommodity flow can achieve greater network performance
over optimizing resource allocation at each layer individually. We
present three cases where a modularized network design problem
can be “merged” and then characterize the benefit achieved by
the merger.

I. INTRODUCTION

Cross layer design has received enormous attention in
recent years due to the increasing awareness that conventional
network layering (ubiquitous in wired networks) unnecessar-
ily limits achievable network capacity due to the inherent
performance dependencies across layers. In this work we
show three cases in which integration of design across layers
provides improvement over the conventional layered design
framework. The metric for performance is global throughput
which is optimized by expanding link capacity with the free
variables coming from a simplified version of the network
stack consisting of three primary components: i) a physical
layer model consisting of cognitive radios, ii) a medium access
layer model where scheduling is performed, and iii) a network
/ transport layer model using multicommodity flow. We next
describe each of the three layers and their resources.

A. Physical (PHY) layer: cognitive radios

Cognitive radios [1] permit dynamic control of fundamental
wireless network physical layer parameters such as trans-
mission power and constellation size. This dynamic control
promises significant performance improvements above con-
ventional radios with static resource allocation configurations.
In this work we study the performance impact of cognitive
radios that dynamically adjust their transmission power and
constellation size in response to channel and interference state,
in order to maximize network throughput (defined below)
while maintaining an acceptably low bit error rate (BER).

PHY resource: constellation size. We assume that the cogni-
tive radios make use of tunable m-ary Quadrature Amplitude

Modulation (m-QAM) with a constellation size of m. A
transmitting node achieves a throughput of c = log2 m bits
per transmission, and an associated BER that is proportional
to m and inversely proportional to the receiver’s signal to
interference plus noise ratio (SINR). Each transmitting node
seeks to find the largest constellation size that can be supported
by channel and interference conditions and does not violate a
specified quality of service constraint on BER.

PHY resource: transmission power. Besides adjusting the
constellation size, cognitive radios are also presumed to have
control over their transmission power. It is instructive to
emphasize how these two degrees of freedom may be used
in a complementary fashion. Adjusting the constellation size,
m, increases the link capacity, c = log2 m, but also increases
the bit error rate (since more points are added the constellation,
thereby pushing the points closer together and increasing the
chance of a symbol decoding error). Changing m has no
effect on the neighboring nodes, other than to change the link
capacity to the node’s receivers. Adjusting the transmission
power, p, on the other hand, has no effect on the link capacity.
Increasing p will increase the SINR seen by the intended
receiver associated with the transmitter, but will negatively
impact the SINR of all other receivers.

B. Medium access control (MAC) layer

It is well known that local transmission scheduling (whether
in time, frequency, or code) is an essential component to
achieving good network capacity. The problem of scheduling
in wireless networks is essentially a packing problem: concur-
rent transmissions must be sufficiently separated in space so
that their respective signals do not cause undue interference
on their respective receivers.

MAC resource: scheduling. Using the transmission powers
and constellation sizes for each node from the physical layer,
a MAC layer schedule is formed by randomly packing each
time slot with a set of transmitters such that the specified BER
constraint is not violated at any node designated to receive in
that slot. New time slots are added until each node is selected
to participate in at least one time slot.

Each time slot in the schedule can be visualized as a
disconnected directed graph, with edges emanating from each
transmitting node to the potential receivers associated with
each transmitter (see Figure 1). By successive relaying a



packet may traverse the network from any source s to any
destination d provided there exists a path connecting s to d
in the graph formed by the union of the individual time slot
graphs.
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Fig. 1. Illustration of the formation of the flow graph from the underlying
graphs for each slot in the schedule. The flow graph idea is adapted from [2].
The left figure illustrates the concurrent transmissions at each time slot. Black
nodes are nodes that have one or more transmission slots; scheduling stops
once each node is assigned to least one transmission slot. The right figure
shows the flow graph obtained by time multiplexing the individual per slot
graphs.

C. Network and transport (NET) layers

In the interest of parsimonious modeling we consider a
fairly abstracted view of the network and transport layers using
the framework of multicommodity network flow. This abstrac-
tion is justified by the observation that a multicommodity
network flow problem combines the key roles of identifying
which links should carry the traffic (the role of the routing
algorithm), and how much data a source can afford to send on
the network given the capacity constraints and congestion (the
role of the transport layer).

Each commodity on the network consists of a source node
and a destination node, where the source node wishes to send
as much data (flow) through the network to its destination as
possible (we assume infinite backlog, i.e., sources never run
dry). The goal of our multicommodity network flow problem
is to maximize the sum commodity rate subject to conservation
of flow and capacity constraints.

NET resource: multicommodity flow. In contrast to conven-
tional flow problems, a flow formulation for ad hoc networks
must incorporate the inherent broadcast nature of wireless
communications. In particular, information is multicast to all
in-range receivers “for free”, but by the same token a receiver
is subject to all in-range interfering nodes. This fundamental
fact alters the conventional network flow problem in two
significant ways.

First, all links (i, j) emanating from a given node i have a
constant capacity: ci = log2 mi for all j ∈ Γ(i), the neigh-
borhood of i. This differs from the conventional network flow
setup where link capacities can vary across edges emanating
from a node.

Second, as discussed above, the graph on which the flow
is placed is the time-multiplexed union of the individual
elementary capacity graphs. As such the effective capacity of
a node is its nominal capacity, ci, thinned by the fraction of
time that the node is eligible to transmit under the specified
schedule. Suppose the network transmission schedule consists

of S equal duration time slots and node i is assigned to
transmit on si of the time slots. Then the effective capacity for
node i is c̃i = wi log2 mi, where wi = si/S is the capacity
thinning factor due to scheduling.

D. Contributions

Summary of model. To recap, our model of the network re-
sources consists of three components. First, the physical layer
resources are the transmission power and the constellation
size, both of which are assumed to be tunable. Second, the
medium access control layer provides a temporal schedule to
prevent nearby nodes from simultaneous transmissions; this
schedule is formed by ensuring the BER (which depends upon
the transmission powers and the constellation sizes) at each
receiver active in each time slot is acceptably high. Third,
the resource allocation decisions of the network and transport
layers are modeled by solving a multicommodity network flow
problem. The solution of this problem, which depends upon
the locations of the commodities sources and destinations,
the network topology (determined by the schedule), and the
link capacities (determined by the constellation sizes). It is
clear that there are significant cross-layer resource allocation
dependencies in this model.

E. Related work

Cognitive radios. Advancements in flexible and dynamic
control of physical layer resources have spurred widespread
interest in cognitive radios, e.g., [1], [3], [4], [5], [6], [7]. Our
own work [8], [9] has focused on how ad hoc network capacity
may be improved when transmitters have the channel state
information (CSI) required to make intelligent resource con-
sumption decisions, e.g., avoiding transmission during deep
fades. Although existing work has dealt with many design and
performance issues surrounding cognitive radios, to the best
of our knowledge no work has yet addressed the problem of
how to intelligently couple power control with constellation
size control in a cross layer context.

Cross-layer design.
There is insufficient space here to do justice to the enormous

amount of work that has gone on over the past five years or so
in the field of cross layer design. We mention only the paper
closest in spirit to ours, namely, the recent 2005 paper by Wu
et al. [2], which is the inspiration for this work. The authors
formulate a cross layer design problem across the PHY, MAC,
NET layers. By solving a linear program for minimizing sum
power subject to specified SINR constraints, they form a time-
multiplexed schedule of elementary capacity graphs, which are
the concurrent transmissions in each time slot. This graph is
then the basis for solving a sum of max of flows problem. The
most significant idea we have borrowed from this formulation
is the idea of obtaining a capacitated graph for network flow
problems from a time multiplexed transmission schedule. The
primary differences from [2] is our focus on the value of
tunable constellation sizes, and on distributed algorithms ([2]
only discusses centralized algorithms).



Multicommodity flow and capacity expansion. Multicom-
modity flow problems are discussed at length in many text-
books on network flow, e.g., [10]. More closely related to
our work in this paper, however, is the body of literature
focused on capacity expansion algorithms. In contrast to the
conventional network flow setting where the capacity of the
underlying graph is assumed fixed, the capacity expansion
problem studies the problem of joint optimization of both flow
and capacity. This is a natural framework in the context of cog-
nitive radio, since capacity is determined by the constellation
size, which can be adjusted based on flow. Although several
variants of the capacity expansion problem have been studied,
e.g., [11], [12], none of them consider the particular case of
wireless networks explicitly.

The rest of this paper is as follows. In Section II we formally
define our model of the PHY, MAC, and NET layers, and
state the (centralized) global cross-layer optimization problem
along with the three ways to modularize this problem. Section
III compares the throughput obtained through joint and layered
design. The paper concludes in Section IV.

II. PROBLEM DEFINITION

In this section we formally state our mathematical model
and define the multiple-layer optimization problem in both its
joint and modular forms.

A. Physical layer: power and constellation size

Consider an ad hoc network consisting of a collection of
N nodes [N ] = {1, . . . , N}. Define x = {x1, . . . , xN},
where xn is the location of node n at some snapshot in
time t. Each node is equipped with a cognitive radio per-
mitting dynamic selection of both transmission power and
constellation size. Let pmax be the uniform per node maximum
power constraint and mmax the maximum constellation size.
Let m = {m1, . . . ,mN} be the constellation vector, and
p = {p1, . . . , pN} be the power vector. Each constellation
size must lie in the finite discrete set M, i.e., m ∈MN , and
each power must lie in the finite discrete set P , i.e., p ∈ PN .
For example, for QAM, we set M = {1, 2, 4, . . . ,mmax}.

Our channel model captures distance dependent path loss
attenuation of signal strength:

h(d) =
{

d−α, d > dmin

1, else , (1)

where d is the distance separating the transmitting and re-
ceiving nodes, and α > 2 is the path loss constant. The case
d < dmin captures near-field behavior.

The channel is also subject to additive Gaussian noise which
we model as a constant σ2. The SINR seen at receiver j when
listening to transmitter i at time t is

SINRj(t) =
pi(t)d−α

ij∑
k∈T (t)\{i} pj(t)d−α

kj + σ2
, (2)

where T (t) is the set of nodes transmitting at time t.

The BER for receiver j when listening to transmitter i with
a constellation size of mi(t) at time t is

BERj(t) = 2Q
(√

2SINR(t)j sin
π

mi(t)

)
. (3)

Finally, let there be a BER constraint bmax specifying the
largest permissible BER on any link; bmax serves as a proxy
for network QoS.

B. Medium access layer: globally optimal scheduling

Let time be slotted and let each round consist of a collection
of S time slots [S] = {1, . . . , S}; each time slot lasts for a
duration λt, t ∈ [S]. A schedule is specified by S different
N ×N matrices, B = (B1, . . . , BS), where

Bt
ij =

{
1, if i transmits to j in slot t
0, else . (4)

A valid schedule is one where each node i transmits in
at least one time slot t.1 Furthermore, the schedule will by
construction satisfy the BER constraint for each attempted
reception. That is, if Bt

ij = 1 then BERj(t) < bmax.
Although the nominal capacity for each transmitter i is ci =

log2 mi, each transmitter only is eligible to transmit on a total
of si of the time slots. As such the effective capacity of link
(i, j) is c̃ij =

∑
t∈[S] B

t
ijλt log2 mi.

B is not a free variable in the cross-layer optimization
framework, and is computed prior to the resource allocation
process. We employ a random packing heuristic from [2] to
compute B such that interference is reasonably limited and
every transmitter, if possible, transmits in at least one time
slot.

The time-multiplexed flow graph. With the schedule in hand
we form the directed directed capacitated graph G = (V,E)
by setting V = {n ∈ [N ] : c̃n > 0} and

E = {(i, j) ∈ V × V : Bt
ij = 1 for some t ∈ [S]}, (5)

that is, the edge set consists of all edges carrying a transmis-
sion on one or more time slots. Finally, each edge e = (i, j) is
assigned a capacity c̃i. Note that although G is directed, every
edge (i, j) usually has an associated edge (j, i) in the reverse
direction (albeit with a potentially different capacity scaling
factor).

C. Network layer: multicommodity flow

Let there be K commodities, each commodity specified by
a source node σk ∈ [N ], and a destination node δk ∈ [N ]. A
throughput vector f = {f1, . . . , fK} is feasible if it respects
both network capacity constraints and conservation of flow
constraints. The objective is is to maximize the sum throughput

1Note that it may not be feasible for all nodes to transmit. In particular,
consider a node n that is the first unassigned node for a new time slot t. If
a node is unable to transmit due to the presence of excessive noise (with no
interference), then the node is removed from the network as incompatible.



summed over the K commodities:

F (f) =
K∑

k=1

fk. (6)

Each commodities throughput may be split across multiple
paths; we define a flow as the set {xk

e , e ∈ E, k ∈ [K]}, so
that xk

e is the flow for commodity k on edge e.

The centralized global optimization problem is to maximize
the sum commodity flow, F (f), subject to flow feasibility
constraints and link capacity constraints. The link capacity
constraints, indeed the links and nodes comprising the graph
itself, depend upon the underlying temporal schedule, B, and
schedule durations λ. Finally, the feasibility of the underlying
temporal schedule depends upon the physical layer power
vector p and the constellation size vector m. Thus, the global
optimization problem is:

max
p,m,x,λ

F (f) =
K∑

k=1

fk

s.t.
∑

i∈[N ]

xk
i,δk

= fk, k ∈ [K]

∑
k∈[K]

xk
ij ≤ c̃ij , i, j ∈ [N ]

∑
j∈[N ]

xk
ji =

∑
j∈[N ]

xk
ij , k ∈ [K], i ∈ [N ]

c̃ij =
∑
t∈[S]

Bt
ijλt log2 mi, i, j ∈ [N ]

∑
t∈[S]

λt = 1

Bt
ij · BERt

j ≤ β, i, j ∈ [N ]

BERt
j = 2Q

(√
2SINRt

j sin
π

mi

)
, i, j ∈ [N ]

SINRt
j =

pid
−α
ij∑

k∈[N ],k 6=i pkd−α
kj + σ2

, i, j ∈ [N ]

The first line states the objective is to maximize the
sum commodity throughput. The first constraint defines the
throughput for each commodity as the sum of the flow over
all edges which terminate in commodity k’s terminal node
δk. The second constraint is the capacity constraint; the third
is the conservation of flow constraint. The fourth constraint
is the equation for transmitter effective capacity; the fifth is
the requirement of schedule durations adding up to one. The
sixth is the required BER constraint (only required to hold at
times when the node is receiving). The seventh constraint is
the expression for BER, and the last is the expression for the
SINR.

The Q function, Q(z) = P(Z > z) for Z ∼ N (0, 1) is
estimated using:

z =
√

2SINRt
j sin

π

mi
,

Q(z) ≈ 1
1
2z + 1

2

√
z2 + 8

π

· 1√
2π

e−
z2
2 .

D. Three cases of design integration.

To compare network performance when optimizing in a
cross-layer fashion as opposed to modularizing the frame-
work by layer and solving each module individually until
convergence, we formulate three cases where integrate and
modularization is reasonable given the global optimization
problem defined in the previous section:

1) MAC+NET vs. MAC|NET
2) PHY+MAC vs. PHY|MAC
3) PHY(p+m) vs. PHY(p|m)
The comparison in all three cases is between the complete

global optimization problem to a framework where that prob-
lem is split in two parts.

MAC+NET vs. MAC|NET This case splits the problem
by first maximizing sum-rate link capacity

∑
i,j∈[N ] c̃ij and

then maximizing the flow on the resultant capacitated graph.
Therefore, in this case, the split of the global framework occurs
between the MAC and NET layers. The relationship between
MAC and NET for this case is indicated by the | symbol.

PHY+MAC vs. PHY|MAC The optimization of power and
constellation size is done independently from the optimization
of the schedule time slot duration in this case, with the
objective still being throughput maximization. Therefore, the
split here is between the PHY and MAC layers. The two op-
timization problems are solved repeatedly until convergence.

PHY(p + m) vs. PHY(p|m) The split in this case is within
the PHY layer, between power and constellation size. Each
is optimized individually for maximum throughput, repeating
the process until convergence.

E. Numerical solution with commercial solvers.

AMPL [13], an algebraic modeling language, was used to
interface with a MINLP (mixed integer nonlinear program)
solver in order to find a global optimum for the centralized
network optimization problem. The data for the model was
loaded from a network simulation engine developed by the
authors. A specialized MINLP solver, MINLPBB [14], then
parsed the AMPL-defined model and data to produce the
globally optimal solution. This optimization engine uses a
parallel branch-and-bound algorithm [15], [16].

III. RESULTS

Figure 2 shows an example network topology, along with
the locations of the sources and sinks of the two commodities
loading the network. The graph shown is the time multiplexed
flow graph obtained by the distributed scheduling algorithm.
Figure 3 shows the relative improvement in sum commodity



throughput as a function of the maximum acceptable BER,
bmax for the three design integration cases. Naturally, the
throughput increases as the BER constraint is relaxed. A key
observation is that there is significant improvement in network
performance from the solution to the integrated problem over
the solution to the split dual problem.

Fig. 2. A sample 25 node topology of the kind used to generate the plots.
The graph is the time multiplexed flow graph obtained through the use of the
distributed coloring algorithm. The network is loaded with two commodities.
The house shapes (nodes 7 and 9) are the sources, the square shapes (nodes
1 and 14) are the sinks, and the circles are the relay nodes. Associated with
each link is a set of boxes which designate the fraction of the capacity used
by each of the commodities on that link.

IV. CONCLUSION

We have presented a novel formulation of a cross layer
network optimization design problem, appropriate for ad hoc
networks of cognitive radios. This cross layer design seeks
to jointly optimize transmission power, constellation size, the
temporal schedule, and the corresponding optimal flow in
order to maximize the sum commodity throughput. We then
demonstrated that for three variations of the modular network
design, increase in network performance can be achieved
by merging the two parts of the framework into a joint
optimization problem.

Our future work is focused on incorporating additional
components of uncertainty into our optimization engine and
our distributed algorithms. In particular, we have added fading
effects to our channels, random noise to the receivers, and
variability in the path loss exponent.

ACKNOWLEDGMENTS

This work is funded by the U.S. Army Communications
Electronics Research, Development and Engineering Center
(CERDEC), under contract #DAAB-07-01-9-L504.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

R
el

at
iv

e 
Im

pr
ov

em
en

t i
n 

T
hr

ou
gh

pu
t

Maximum BER Requirement

Improvement of Integrated over Layered Design

 MAC+NET vs. MAC|NET
 PHY+MAC vs PHY|MAC
  PHY(p+m) vs. PHY(p|m)
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