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Abstract— Path planning and network design are often treated
by architects of mobile communication networks as separate
problems. In fact, most mobile ad hoc network (MANET) designs
do not consider the path that the network nodes would take as
part of the objective set, but incorporate them in an abstract
form as general constraints on mobility (limit on the initial
configuration and the node velocity). It appears that significant
performance improvement may be possible if multiobjective
optimization is attempted on performance indices such as connec-
tivity of the network and arrival time of all nodes at a specified
terminal set. In this study we provide an efficient decentralized
method for computing the Pareto optimal set of plans, and
show the benefit of path planning under six different metrics
of MANET performance.

I. INTRODUCTION

It is conventional when considering mobile networks to treat
user mobility as exogenous, and to seek network designs that
perform adequately regardless of user positions. This paradigm
of movement is often natural and appropriate: most of the time
getting to our destination in the shortest possible time trumps
the desire to stay connected to the network. Yet with our
ever increasing dependence on and expectation of ubiquitous
connectivity, it is ever more conceivable that connectivity
concerns may guide our path planning decisions. Given the
choice between a shortest path that suffers frequent network
outages and a longer path that offers continuous connectivity,
the designer may choose the latter if the sacrifice in travel
time is not too great.

In this paper we explore the interplay between communica-
tion and path planning in mobile ad hoc wireless networks. In
our setting, at each point in time, each node receives feedback
on the “communication value” of each of the different paths
it might take in seeking its final destination. In particular, we
employ a discrete space model, where each node incorporates
knowledge of how each of its feasible next “hops” would
affect the communication pattern on the network. Each node
is therefore balancing the potentially competing objectives of
minimizing the time to destination (by taking the minimum-
time path) and maximizing “information flow” (by following
the path most advantageous to communication). Nodes are
assumed cooperative: even relay nodes, who are not the
source or sink for any data, will attempt to balance these two
objectives. Our results demonstrate that incorporation of path
planning in the network design process can in some cases
improve network performance significantly.

II. RELATED WORK

This paper bridges the fields of network design and path
planning by allowing movement to be a controllable resource

in the optimal allocation process. The pertinent problem of
path planning under geometric constraints has received signif-
icant attention in literature, most notably under the topic of
formation control (e.g. [1], [2]). In general, formation control
involves two steps. First, the nodes move into a geometric
formation with either hard or soft constraints on the type of
formation; then these nodes attempt to maintain their geo-
metric relationship to each other while moving and avoiding
obstacles. The techniques of formation control generally do
not scale in the number of nodes, do not consider travel time
as a significant objective, and do not use network perfor-
mance metrics for models of the relationships between nodes.
Moreover, when the formation requirement is formulated as a
communication metric (e.g. [3], [4]), it is considered only as
a hard constraint. The key difference of our work is that we
can achieve significant improvement in network performance
when connectivity is sparse, which is only possible when
communication is used in optimization as an objective. We
combine this objective with a conflicting goal of travel time,
which allows us to form a trade-off curve between the two
metrics. To get the solution produced by formation control,
we simply look at the solution on the trade-off curve that
allows unlimited travel time. In [5], the authors propose a
method for communication-based movement planning. The
key difference of this paper with ours is that it assumes a
kinematic model that is constrained to a predetermined path
and it only considers one basic metric of connectivity, while
this paper considers six more complex and realistic models of
network performance.

III. MOVEMENT AND COMMUNICATION MODEL

In the subsequent discussion we adopt commonly used
models from [6], [7] and use notation that is consistent with
[5].

A. Movement Graph
In order to discretize traversability information provided by

the presence of obstacles, boundaries, and kinematic restric-
tions in an arena, a movement graph GM (VM , EM ) is formed.
VM is a set of vertices, each of which indicates a state that
can be occupied by a single network node. The edges EM
indicate a set of feasible movements in the arena. Specifically,
Λ(i) ≡ {j : (i, j) ∈ EM} is the set of neighbors of i. Each
step has an associated travel time of one time unit.

B. Mobility Model
The mobile network consists of a set n nodes. Each node

i = 1, 2, ..., n in the network has a movement plan Pi that is



Fig. 1. A network of two nodes, each with a movement plan. The polygons
are obstacles, grey lines are movement graph edges, circles are nodes, and
bold black lines are movement plans.

an ordered set of vertices in VM . Pi(t) is the tth element in
set Pi. In other words, Pi(t) is the position of node i at time
t = 0, 1, ..., |Pi|. Figure 1 shows an example of two nodes,
each with a movement plan.

Time is discrete, and movement is assumed to be syn-
chronous. Therefore, the motion planning problem involves
a set of |Λ(i)| + 1 choices for each node at each state i of
the network. The additional choice is the decision to remain
in the same state.

The time it takes for a node i to travel from its origin to
its destination is denoted as Ti. We refer to the sequence of
choices in this paper as a plan or policy. Tmax = max{Ti : i =
1, 2, ..., n} designates the length of the longest plan, which is
also the time to completion of the scenario. The term scenario
is used to denote the set of n plans as a whole. After time
t = Ti, node i remains in the same position until Tmax. It
continues to transmit and receive messages during this period.

C. PHY and MAC Models

We use the PHY and MAC model abstraction defined in
[6]. Specifically, scheduling is done in the temporal domain,
where the transmissions are synchronized. Each schedule is a
choice of transmitters with associated powers, and the set of
schedules form a cycle which is looped continuously. Every
node i has an associated fixed transmission power Pi, and
scheduling is performed such that in one cycle each node
gets at least one opportunity to transmit. We use the random
packing procedure in [6] to find a set of schedules, as shown
on the left hand side of Figure 2. This procedure picks a set
of schedules that (1) guarantee each node at least one chance
to transmit and (2) guarantee a sufficient distance between
concurrently transmitting nodes for signal interference to be
acceptably low. On the right hand side of the same figure
is the graph GF = (VF , EF ) formed by multiplexing these
schedules together. That is, if in one of the schedules the
node i can successfully communicate with node j, edge (i, j)
is added to GF with a capacity corresponding to the sum of
capacities on each such feasible instance of communication.

The control parameters of the PHY graph are (1) the fixed
power Pi on each node i; (2) the communication radius RC
which defines an estimated range of feasible communication;
and (3) the minimum acceptable signal-to-interference-plus-
noise (SINR) ratio γ which defines the quality-of-service
requirement for the channels. Given these values, the random
packing procedure adds transmitters to a time slot incremen-
tally such that the SINR requirement is not violated for any
of the links in EP . SINR is computed by:
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Fig. 2. The process of forming a capacitated graph from a set of schedules.

SINRij =
PiAij∑

k 6=i PkAkj + η
, (1)

where SINRij is the SINR on the channel between transmitter
i and receiver j, η is the channel noise power which is as-
sumed to be receiver-independent. Aij is attenuation between
transmitter i and receiver j defined as Aij =

(
dref
dij

)α
, where

dij is the distance between nodes i and j, dref is a channel
reference distance, and α is the attenuation exponent.

The result of the packing procedure is a collection of graphs
GP ≡ {G1

P , G
1
P , . . . , G

m
P } where m ≤ n. All edges (i, j) in

graphs of GP satisfy the requirement that SINRij > γ. The
capacity on each of those edges is determined in one of two
ways: (1) capacity of 1 on all feasible edges, or (2) SINR-
dependent Shannon capacity defined as follows:

Cij(GzP ) = Bij(GzP ) log2 (1 + SINRij(GzP )) , (2)

where Bij is the bandwidth on edge (i, j) which is assumed
to be 1, effectively setting capacity to the spectral efficiency
of the channel, Cij is the capacity on edge (i, j), and z =
1, 2, . . . , |GP | is the index of the physical graph. Note that B,
C, and SINR are shown as functions of a specific graph. This
is used to distinguish the capacities and SINR on individual
physical graphs from the single multiplexed flow graph. Unless
otherwise specified, capacity Cij refers to the flow graph
capacity Cij(GF ).

The multiplexing procedure is additive for capacity, that is,
the capacity of an edge (i, j) in the flow graph GF is computed
from GP by:

Cij(GF ) =
|GP |∑
z=1

Cij(GzP ). (3)

The result of the multiplexing procedure is a capacitated
flow graph GF = (VF , EF ) that has an edge (i, j) ∈ EF if
and only if Cij > 0.

D. Multicommodity Flow

Let there be K commodities, each commodity specified by
a source node σk ∈ VF , and a destination node δk ∈ VF .
A commodity specifies a stream of unique data. A throughput
vector f = {f1, . . . , fK} is feasible if it respects both network
capacity constraints and conservation of flow constraints. The
objective is is to maximize the sum throughput summed over
the K commodities. Each commodities throughput may be



split across multiple paths; we define a flow as the set {xke , e ∈
EF , k ∈ [K]}, so that xke is the flow for commodity k on edge
e. The max multicommodity flow problem is:

max
x

F (f) =
K∑
k=1

fk

s.t.
∑
i∈VM

xki,δk
= fk, k ∈ [K]∑

k∈[K]

xkij ≤ cij , i ∈ VF , j ∈ VF∑
j∈VM

xkji =
∑
j∈VM

xkij , k ∈ [K], i ∈ VF

(4)

The first line states the objective is to maximize the
sum commodity throughput. The first constraint defines the
throughput for each commodity as the sum of the flow over
all edges which terminate in commodity k’s terminal node δk.
The second constraint is the capacity constraint; the third is
the conservation of flow constraint.

E. Optimization Formulation

The path planning problem we define is a maximization of
a global network performance measure under the constraints
of a fixed travel time.

The network performance is an average over the duration of
the scenario. In this paper we define six objectives which are
described in detail in Section IV. Therefore, the objective value
is the measure of network performance for the path divided
by the global time to completion Tmax. We use N(P(t)) to
denote the function which computes the network performance
given the position of the nodes P(t). The movement planning
problem can be formulated as follows:

max
1

Tmax + 1

Tmax∑
u=0

N(P(u))

s.t. Pi(t) = gi |Pi| ≤ t ≤ Tmax, i = 1...n
Pi(0) = oi i = 1...n
(Pi(t), Pi(t+ 1)) ∈ EM i = 1...n

(5)

where EM , as defined previously, is the set of all possible
single-step movements allowed in the lattice graph GM .

The key decision variable of this problem is the set of paths
P. The key control parameter is Tmax. For a given instance
of a movement planning problem, the increase of Tmax is
likely to result in an increased improvement in performance in
the average case. Therefore, the optimization problem defined
in (5) is solved for Tmax = Tmin, Tmin + 1, Tmin + 2, . . . ,
where Tmin is the duration of the scenario if all the nodes
march down their respective paths without stopping and with
no regard to any communication considerations. The solutions
to each of these problems considered against Tmax form a
Pareto-optimal front [8]. Tmax is a secondary objective in that
we may wish to minimize the time to completion. Therefore,

the Pareto front allows one to choose between faster travel
time or better network performance.

IV. NETWORK PERFORMANCE OBJECTIVES

We define three categories of metrics of network perfor-
mance and within each category specify two objectives. Unless
otherwise stated, these metrics measure performance on the
multiplexed flow graph GF . In some cases, these metrics will
be referred to by their respective section: A1, A2, B1, B2, C1,
C2.

A. Connectivity

1) Connected Components: This is the number of clusters
of nodes where a message from any member in that cluster can
reach any other member inside the same cluster. This value is
computed using Kosaraju’s algorithm [9]. The range of values
for this metric is {1, 2, ..., n}.

2) Isolated Nodes: This is the number of nodes that do
not have feasible communication with any other nodes. This
happens when a node does not have any neighbors in a disk
area of radius RC .

B. Capacity

1) Link Density: This is the number of links in all the
graphs of GP combined. Another interpretation of this metric
is the sum-rate capacity of the network under the constant unit
capacity model.

2) Shannon Capacity: This is the sum-rate capacity of GF
under the Shannon capacity model as defined in (3).

C. Throughput

1) SINR-Independent Flow: This is the value of the maxi-
mum multicommodity flow defined in (4) with the flow graph
GF formed under the constant unit capacity model.

2) Shannon Capacity Flow: This the SINR-dependent
throughput but with the flow graph GF formed under the
Shannon capacity model.

V. SEARCH METHODOLOGY

In a system of nodes, a single node makes an intelligent de-
cision about its future movement by optimizing its path based
on a well-defined communication or movement objective. This
planning procedure is a distributed procedure in a sense that
it does not consider cooperative movement. However, it does
assume the availability of a centralized heuristic function
which is able to measure the global utility of a network state.

The search for the minimum-cost path is performed by a
variation of the A* search procedure [10], [11] as shown
in Algorithm 1, HeuristicSearch(GM , s, t, Tmax, g, h).
Here, GM (VM , EM ) is the finite movement graph described
previously, s is the position of the node immediately before
planning begins, and t is the goal position. Also, Tmax is an
optional parameter which provides a hard constraint on how
long the path is allowed to be. Finally, g(v) and h(v) define an
estimate of the current value and predicted value, respectively,
of a vertex v (in the context of a path) in the movement graph.
For convenience of pseudocode expression, g is overloaded as:



g : V → R, g : (V, V )→ R, and g : P(V )→ R where P(A)
is a power set of V . f(v) = g(v) + h(v) is the cost function
which combines the two heuristic functions, g(v) and h(v), to
make a decision about which vertices to investigate as possible
candidate members of the minimum-cost path.
HeuristicSearch is a planning procedure for a single

node. It keeps three lists: (1) Open, (2) Closed, (3) Unvisited.
Together, without intersection, these lists contain all nodes in
VM . The algorithm starts by adding the starting position s to
the open list. It then adds all the neighbors of s to the open
list, while adding s to the close list. Next, it adds the children
of the lowest-cost state BEST in the open list to the open list,
and adds BEST to the closed list. This procedure is repeated
until the destination t is added to the closed list. Every time a
node is put in the open list, it is removed from the unvisited
list.

Algorithm 1 HeuristicSearch
Input: GM (VM , EM ) ; s, t ∈ VM ;Tmax; g, h : VM → R
OPEN ⇐ {s} // OPEN is the open list
CLOSED ⇐ ∅ // CLOSED is the closed list
while OPEN 6= ∅ do
BEST ⇐ arg min{f(v) : v ∈ VM}
OPEN ⇐ OPEN \ BEST
CLOSED ⇐ CLOSED ∪ BEST
if IsGoal ( BEST ) = true then

return Path(BEST)
end if
if |Path(BEST)| > Tmax then

continue
end if
CHILDREN ⇐ Children(BEST) ∩ Path(BEST)
for all c ∈ CHILDREN do

if c /∈ (OPEN ∪ CLOSED) then
OPEN ⇐ OPEN ∪ c

else if g(Path(c)) > g(Path(BEST)) + g(BEST, c)
then
c.parent ⇐ BEST
if c ∈ CLOSED then
Update(c)

end if
else
CHILDREN ⇐ CHILDREN \ c

end if
end for
BEST.children ⇐ CHILDREN

end while
return failure

The function IsGoal determines if the state passed to it
is a goal state. The function Children(v) ≡ {w : (v, w) ∈
EM} generates all the positions in the movement graph which
are reachable from the current position. It is independent of the
execution state of the algorithm. Specifically, it only represents
the discrete kinematic information formed from the global
knowledge of the world. The function Update(v) recur-

sively updates the value of each member in a node’s family
tree. This is a computationally important, but often skipped
step, which is done when v ∈ CLOSED and is chosen to be
“reopened”. The function Path(v), determines the steps that
lead to a state v from s by recursively tracing backwards
along the chain of parent pointers until a null pointer is
reached. Specifically, Path(v) ≡ v ∪ Path(v.parent), and
Path(∅) = ∅.

Algorithm 1 maintains a list of open and closed movement
nodes VM which ensures that a state is not explored more than
once unless it appears to be better than originally estimated.
The open list efficiently represents (in our case as a binary
heap) the search frontier that is used in making best-first
expansions of the search graph.

VI. SIMULATION AND RESULTS

We present performance improvement against the time allow
for the nodes to move to the destination over the shortest
possible duration of the scenario, or Tmax − Tmin. Intuitively,
the more time the nodes are given, the greater the improvement
of average network performance.

A. Simulation Setup
All simulations were performed on an arena of 100×100

m2, with 20 nodes. The origin and goal for each node are
placed independently and uniformly at random over the arena.
Each data point on the presented plots is an average of 5,000
simulations.

The range of communication requirement RC is chosen
using a parameter m ≥ 0 that is scalable in the number of
nodes and the size of the world [12]: RC = m

π

√
A logn
n , where

A is the area of the arena and n is the number of nodes. When
m � 1 the network is well connected and motion planning
is unlikely to improve the network performance, unless most
of the arena is covered with obstacles. When m ≈ 1, the
network is likely to be partially disconnected and therefore
motion planning is expected to show improvement. When
m � 1, the granularity of the movement graph is greater
than RC and therefore motion planning is likely to be unable
to improve connectivity. We used a value of m = 0.5 which
in general results in poor network performance if movement
is not optimized.

The sources and sinks for different commodities of flow
are chosen randomly at the start of the scenario and kept
constant throughout the scenario. In simulation, there are two
commodities, and thus, out of 20 nodes, 16 are designated as
relay nodes.

B. Improvement
Improvement is defined as N∗/N − 1, where N∗ is the

average network performance with path planning, and N is the
average network performance of the naive movement policy
of marching down the shortest path without consideration of
communication objectives. Therefore, this improvement metric
measures the relative increase in performance provided by
path planning, with 0 indicating no improvement, 1 indicating
100% improvement, etc.
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Fig. 3. Comparison of network performance improvement from two different
models of path planning. The first method is restricted to a prespecified plan.
The second method is restricted only by the movement graph. The measure
of network performance for this plot is the number of connected components.

C. Path Restricted vs. Movement Graph Restricted

When nodes are forced to travel along a fixed path, and their
only choices are to step forward, stay in place, or step back, we
expect to see less improvement in network performance than
when the nodes can move without restriction on a general
movement graph. The former model is considered in [5],
where improvement is shown in terms of the number of
connected components. Figure 3 compares the improvement
attained from the path restricted and the movement graph
restricted models of movement. On the x-axis of this plot is the
extra time allowed for planning. On the y-axis is the relative
improvement of the plan after optimization as compared to
a shortest-path plan. To be clear, the plot shows that the
movement graph method provides 100% improvement for
when zero extra time over the duration of a shortest path is
allotted to the nodes, and as high as 500% improvement for
Tmax − Tmin = 8.

D. Improvement Under Different Measures of Performance

We define six measures of network performance (see Sec-
tion IV), each of which are used as objectives in the optimiza-
tion problem defined by (5). Figure 4 shows a improvement
of network performance under all six metrics. An interesting
insight shown in the plot is that when Tmax−Tmin = 0, under
all metrics, path planning provides a large improvement. This
is the point of no cost in terms of time. In other words, if
scenario duration is a critical cost, path planning can provide
improvement in network performance, without increasing the
cost associated with longer travel times.

VII. CONCLUSION

Movement is a key variable for highly-dynamic commu-
nication networks, and its optimal allocation proves to be
effective at improving the network performance. We develop
an efficient decentralized path planning method and show its
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Fig. 4. The improvement in six different metrics of network performance
attained by path planning with respect to increasing planning time. The six
metrics used here are described in Section IV.

ability to improve communication as measured by six metrics
based on realistic models of ad-hoc wireless networks. The
key assumption of our method is that the kinematics of the
system can be modeled by a finite movement graph. This is
the input to the optimization engine. The output is the Pareto
optimal set of plans for the trade-off between scenario duration
and network performance.
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