
Communication-Based Motion Planning
Lex Fridman∗, Jay Modi∗, Steven Weber† and Moshe Kam†∗

*Department of Computer Science
†Department of Electrical and Computer Engineering
Drexel University, Philadelphia, Pennsylvania 19104

Abstract— The conventional philosophy in designing mobile
networks is that network node movement should be independent
of network state. However, there are practical situations where
movement decisions may be modified to ensure connectivity. For
example, emergency responders in a crisis region relying upon
an ad hoc network may need constant reliable communications
and therefore adjust their search plan to stay connected, though
aspects of their mission may override their objective of staying
connected. We present a discrete formulation for this problem
and a method for solving it optimally. We propose a cooperative
and a noncooperative algorithm, showing that the run-time of the
latter is drastically more efficient with a minimal performance
cost relative to optimality.

I. INTRODUCTION

Path planning is used for a range of applications from
optimal-path navigation [1], [2] to exploration [3], [4] to
the movement of robotic arms in manufacturing plants [5],
[6]. Many different constraints have been explored, including
formations of robots, kinematic properties of vehicles, and
robotic sensors and communication.

This paper focuses specifically on the movement of a team
of nodes through an obstacle laden terrain with the objective
of maintaining communication. The nodes can be vehicles,
people, robots, or anything else that moves. The communica-
tion objective is defined as the number of strongly connected
components in the network. The optimization problem seeks
to minimize the average number of such components. The
terrain contains obstacles which obstruct both movement and
communication.

Both the terrain and the physical paths of the nodes are
known a priori. We wish to move our nodes in such a way
that minimizes the total time to scenario completion but also
minimizes the time they spend disconnected.

In multi-agent systems there often appears a tradeoff be-
tween centralized optimality and distributed efficiency. This
paper proposes two methods, cooperative and noncooperative,
which embody the respective classes of optimization tech-
niques. Furthermore, the distributed method is shown to be
near-optimal while being low-cost computationally.

II. BACKGROUND

The problem of constrained motion control has been thor-
oughly studied, most notably under the topic of formation
control. Specifically, Bicho and Monteiro [7] use nonlinear
attractor dynamics to model nonholonomic formations of
robots. The key contribution of their work is the ability of
robots to maintain robust formations in the face of unknown

environmental perturbations. In earlier work in the field, Wang
[8] studies the use of nearest neighbor tracking to maintain
formation. Their method has the important qualities of being
simple, computationally efficient, and distributed. However, it
does not directly consider collision and obstacle avoidance.
Desai, et al., [9] use methods of feedback linearization to
stabilize the distance of a follower node to a leader node. They
further investigate this problem in [10], proposing a graph
theoretic framework for the coordination of transitions from
one formation to another.

Formation control is a basis for the more recent efforts, most
relevant for the proposed algorithms in this paper, on motion
planning under communication and networking constraints.
Beard and McLain [11] propose a dynamic programming
method for the cooperation motion planning under commu-
nication constraints that is polynomial in the number of nodes
but exponential in the depth of the lookahead window. The key
characteristic of this method relative to our proposed methods
is that the limited range connectivity is a hard constraint,
while in our method it is an objective. The hard constraint
is a prerequisite which makes their method inapplicable to the
more general model considered in this paper. Pereira, et al.,
[12] present a decentralized method of motion planning under
communication constraints. One of the defining features of
their method is that it first seeks to achieve connectivity, and
then move to the goal positions in such a way as to not break
connectivity, which is essentially the problem of formation
control. Spanos and Murray [13] define a connectivity robust-
ness metric, which uses conservative connectivity constraints
to attain good network performance despite the algorithm’s
distributed structure with minimal added limitations on physi-
cal reachability. The key difference of this work from our paper
is that Spanos and Murray view connectivity as a constraint
while we view it as an objective, which is more general in
that it seeks to also optimize communication for cases when
connectivity is sparse.

III. PROBLEM FORMULATION

A. Path-Based Mobility Control

The discrete arena representation is an s × s kinematic
constraint lattice G = (V,E) with randomly positioned convex
polygon obstacles. Each point i ∈ V in the lattice represents
a space in the arena that can be occupied by the node. Each
edge (i, j) ∈ E in the lattice represents the possible set of
movements a node can make in a single time step. An example
lattice is shown in Figure 1.

Fig. 1. 20 example paths in the lattice-discretized space with obstacles.

The mobile network consists of a set n nodes. Each node
i = 1, 2, ..., n has a corresponding path Pi. One end of Pi

is the origin of i, and is denoted as oi ∈ V . The other is
its goal, gi ∈ V . The length Li > 0 of the path Pi is the
number of steps it requires a node to travel from the origin
to the goal. Therefore, there are Li + 1 positions on path Pi

that can be occupied by node i. Specifically, Pi = {Pi(0) =
oi, Pi(1), ..., Pi(Li − 1), Pi(Li) = gi}.

Time is discrete and is advanced in steps. It is assumed that
the path for each node as shown in Figure 1 is given a priori.
Therefore, the motion planning problem involves a set of two
choices for each node at each state of the network. The choices
are (1) to step forward or (2) to stay in place. We denote Di(t)
as the position of node i at time t, where t = 0, 1, 2, ... is the
elapsed time from the start of simulation.

The time it takes for a node i to travel along a path is
denoted as Ti. For example, if the node marches down its
prescribed path without stopping Ti = Li. We refer to the
sequence of choices (move forward or wait) in this paper as a
plan or policy. Therefore, the length of a plan for node i is Ti,
and the length of a path for node i is Li. This is an important
distinction in terminology, and will be used often, because the
improvement from motion planning is attained when Ti−Li >
0. Tmax = max{Ti : i = 1, 2, ..., n} designates the length of
the longest plan, which is also the time to completion of the
scenario. The term scenario is used to denote the set of n
plans as a whole. After time t = Ti, node i remains in the
same position until the completion of the scenario. In other
words, node i remains at its goal state without the ability to
move for a duration of Tmax − Ti. Nevertheless, it remains
part of the global communication network during that time.

The number of possible movement combinations at each t
is δ = 2n − 1, where δ is the upperbound branching factor
for each state reachable from the initial state. It is assumed
that at least one node must move forward at each time step.
The state of the system at time t is the vector D(t) =
{D1(t), D2(t), . . . , Dn(t)} of positions of the nodes by time
t. We use Πi = {Di(0), Di(1), . . . , Di(k− 1)} to denote the

ordered set of positions which make up a plan. The cardinality
of this set is k and, given the proposed model, the cardinality
of Πi is the same for all i. The function K(Π) = k returns
this common cardinality. Furthermore, we use Πi(t) = Di(t),
Π(t) = D(t), and Π = {Π1,Π2, . . . ,Πn}. Both Π and D
contain information about the topology of a network through
time. However, Π is used to denote all potential plans, while
D is used to denote actual topologies.

B. Communication Models

The number of connected components is used as the global
network performance measure. This value is computed using
Kosaraju’s algorithm [14]. The range of values for this metric
is in {1, 2, ..., n}.

Two nodes i and j are considered connected if the distance
between them dij is less than or equal to the constant dmax,
which is proportional to a node’s transmit power. In addition to
the range requirement for connectivity, two nodes must have
line-of-sight communication with each other. Therefore, the
second condition of connectivity is that a straight line can be
drawn which connects the two nodes without intersecting any
obstacles.

C. Optimization Objectives, Constraints, and Search Space

The motion planning problem that we define involves
maximizing a global network performance measure under the
constraints of a fixed travel time. That is, a node i is given
a path of length Li, and a time to completion of Ti, the
optimization seeks to find what the node should do with the
extra Ti − Li ≥ 0 time units. In this paper, we ensure that
for all i, Ti − Li is equal to a constant τ . Therefore, each
node gets the same amount of extra time which can be used
to improve the network performance throughout their plan.

The network performance is an average over the duration
of the scenario. Therefore, the objective value is the measure
of connectivity for the path divided by the global time to
completion Tmax. We use the C(D(t)) to denote the function
which computes the number of connected components in the
network given the position of the nodes D(t). The movement
planning problem can be formulated as follows:

min
1

Tmax + 1

Tmax∑
u=0

C(D(u))

s.t. Ti = Li + τ i = 1...n

Di(t) = gi Ti ≤ t ≤ Tmax, i = 1...n
Di(0) = oi i = 1...n

(Di(t), Di(t + 1)) ∈ E i = 1...n

(1)

Where E, as defined previously, is the set of all possible
single-step movements allowed in the lattice.

Given the nodes, their paths, and the function C(D), the
search space of the optimization problem can be constructed
in the form of an n-dimensional connectivity matrix. This
matrix is a representation of the C(D) function. An example
of a 2-dimensional matrix is shown in Figure 2. The x-axis

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

Fig. 2. Connectivity matrix for 2 nodes. The gray states have a C(D) value
of 2, while the white states have a value of 1. The path through the matrix
defines the combined movement policy for the two nodes. The bottom left
corner is the starting state, and the top right corner is the goal state.

of this matrix is the position of a1 along its path from 0 to
L1 = 10. The y-axis of the matrix is the distance traveled
by a2 along its path from 0 to L2 = 6. Each cell in the
matrix contains the number of connected components in that
specific network configuration . In Figure 2, the gray boxes
designate the state with two connected components, which
means that the network is completely disconnected. The white
boxes designate one connected component, which means that
the network is fully connected. Note that the dimension of the
connectivity matrix is n.

A solution to this problem is a path through this connectivity
matrix from the starting point (where all nodes are at their
origins) to the goal point (where each node has reached its
goal). In the matrix in Figure 2, three different movements
are possible: moving up corresponds to moving node 2 along
its path, moving to the right corresponds to moving node 1
along its path, moving diagonally corresponds to moving node
1 and node 2 along their respective paths. The path shown in
Figure 2 has a value of 1 in the each of the first 5 positions,
then a value of 2 in each of the the next two positions, and a
value of 1 in each of the last 4 positions. Therefore, the value
for this policy as defined in the objective function of (1) is
9×1+2×2

11 = 13
11 .

For a given instance of a movement planning problem, the
increase of τ is likely to result in an increased improvement in
performance in the average case. Therefore, the optimization
problem defined in (1) is solved for τ = 0, 1, 2, The
solutions to each of these problems form a Pareto-optimal
front [15]. τ is a secondary objective in that we may wish to
minimize the time to completion Tmax. Therefore, the Pareto
front allows one to choose between faster travel time or better
network performance.

IV. SEARCH METHODOLOGY

The search space for the problem defined by (1) is all
the possible paths from the origin to the destination in the
connectivity matrix described in the previous section. We
propose two search methods: cooperative and noncooperative.
The cooperative method finds the optimal solution but at the
cost of greater running time. The noncooperative method is

much faster, but it does not guarantee finding the optimal.
However, as we show in the results, it performs very well in
the average case.

A. Cooperative Optimization

Uniform-cost search [16] is used to traverse the search space
of the optimization problem defined in (1). This method is
labeled as cooperative because it considers at each time point
all possible combinations of movements by the nodes. In other
words, the movement choice of one node directly affects the
movement choice of all other nodes.

Algorithm 1 UniformCostSearch
Require: n nodes with determined paths

searchNode ← D(0)
openlist.add(searchNode)
loop

searchNode ← MinCost(openlist)
if searchNode = goalState then

return Plans(searchNode)
end if
openlist.add(Successors(searchNode))

end loop

Algorithm 1 initiates its search at the state where all the
nodes are at their respective origins. A state in this context
is defined by D(t), that is, the position of all the nodes at a
specific time. The successor states from each current state are
determined using Algorithm 2.

Algorithm 2 Successors(state)
Require: n nodes with determined paths

for i = 1 to δ do
change ← IntToBinaryString(i)
next ← state + change;
if Valid(next) then

list.add(next)
end if

end for
return list

Successors(state) takes a state as input and returns a list
of states which are its valid successors. A valid state is one that
is within the bounds of the path. IntToBinaryString(i)
converts the integer into a binary string that is then used to
move each node either 0 or 1 steps forward. For a mobility
model where backwards mobility or multiple-step mobility is
allowed, the integer would instead be converted to a higher
base. Plans(searchNode) traces the searchNode state back
up the search tree to generate a set of plans that was used to
reach that state.

Algorithm 1 also defines a MinCost(list) method which
takes a set of states and returns a single state which minimizes
a connectivity cost function Cost(Π(t)):

Cost (Π) =
K(Π)∑
u=0

C(Π(u)) +
K(Π)

Tmax + 1
(2)

The second term is the travel time cost and is used as
a tie breaker for when the values of the first term are
equal for two or more states. Its maximum value is smaller
than the minimum non-zero incremental change of C(D(t)).
Therefore, it cannot influence the cost to a point where a
state with worse communication be chosen over another with
better communication. In other words, the second term is a
preference for shorter paths.

B. Noncooperative Optimization

The noncooperative method does not consider the nodes in
the network in a centralized way when planning their move-
ment. Instead, it plans each node’s movement individually
assuming fixed movements for other nodes. It repeats this
procedure for each node until convergence.
NoncoopSearch as shown in Algorithm 4 loops through

each node on which it performs a procedure similar to
UniformCostSearch, except that instead of adding δ
successors at each iteration it adds at most 2. As input, the
algorithm is given a set of plans Π. For each node i, it
searches for a way to adjust Πi such that the global network
performance is improved. The cost of a state is determined
based on the current node’s choice of movement and the pre-
specified choices of the other nodes. Plan(searchNode) traces
the searchNode state back up the search tree to generate a plan
that was used to reach that state. Note that “searchNode+1”
indicates a state that would be reached by moving one step
forward from searchNode.
ConvergePlan as shown in Algorithm 3 first initial-

izes a set of plans to the march-ahead policies using
GenerateMarchAheadPlans. What this function does is
for each node i, it sets Πi to Pi plus Tmax − Li copies
of the goal state Pi(Li). In other words, the initial plan for
each node is to step forward at each time step and once
the goal state is reached to wait there until the end of the
scenario. After the initialization, ConvergePlan repeatedly
runs NoncoopSearch until the first sign of convergence,
that is, when the cost of the policies from adjacent iterations
are the same. Note that in the actual implementation other
signs of convergence are monitored for such as repeated
patterns in cost values. The set of policies returned by this
algorithm is not the last one found, but the best one found
before the detection of convergence.

C. Iterative Depth Search

The solution that is returned both by the cooperative and
noncooperative methods is a policy for a single value of τ . In
order to obtain the entire Pareto front, the search algorithm
is run repeatedly while iterating τ from zero up by one.
The resulting set of solutions is Pareto optimal for the two
objectives of communication and travel time.

Algorithm 3 ConvergePlan
Require: n nodes with determined paths

costPrevious ← 0
costBest ← 0
Π ← GenerateMarchAheadPlans(P)
loop

Π ← NoncoopSearch(Π)
costCurrent ← Cost(Π)
if costCurrent = costPrevious ∩ costPrevious 6= 0 then

return Πbest
else if costCurrent < costBest then

costBest ← costCurrent
Πbest ← Π

end if
costPrevious = costCurrent

end loop

Algorithm 4 NoncoopSearch

Require: n nodes with determined plans Π = {Π1, ...,Πn}
for i = 1 to n do

searchNode ← oi

done ← false
openlist.add(searchNode)
while done = false do

searchNode ← MinCost(openlist)
if searchNode = goalState then

Πi = Plan(searchNode)
done ← true

else
openlist.add({searchNode, searchNode+1})

end if
end while

end for
return Π

D. Complexity Analysis

Algorithm 1 is an exhaustive search. In the majority of
cases, it does not consider all the possible states, but in the
worst case it must consider O(δTmax) states, because δ is the
branching factor of the search tree and Tmax is its depth.
For δ = 2n − 1, the asymptotic size of the search space is
O(2nTmax).

For each state, Cost is executed. This function is imple-
mented using Kosaraju’s algorithm [14], which is O(n). For
each link in the network, we check if it intersects any of
the obstacles in the arena. There are O(n2) such links, and
the intersection algorithm’s running time is O(β) for each
link, where β is the number of obstacles in the arena. For
example, in Figure 1, β = 20. The time complexity of Cost
is O(n + βn2) = O(βn2). Note that each computation of
C(Π(t)) is cached and therefore the running time of Cost
only includes computing the cost of the latest addition to the
plan, assuming it hasn’t already been encountered.
MinCost is executed for all non-leaf states, of which

there are O(2nTmax−1). However, because the openlist never
contains duplicate states, the running time complexity of
MinCost is constant in the number of states. In summary, the
expensive processes involved in Algorithm 1 are the generation
of the states and the computation of the cost for each state.
Therefore, the total worst-case running time of the cooperative
algorithm is:

O(βn2 · 2nTmax) (3)

The openlist may potentially contain half of the search
space. Therefore, the worst-case space complexity of the
uniform-cost search algorithm is O(2nTmax−1).

The noncooperative method in Algorithm 3 is more efficient
than Algorithm 1 because of its distributed structure. The outer
loop performs a small number c of iterations for convergence.
The planning is done for each of the n nodes. The computation
of the cost is still O(βn2). Since the branching factor is 2, and
the search tree depth is again Tmax, the maximum number of
states that is considered is 2Tmax . Therefore, the total worst-
case running time of the noncooperative algorithm is:

O(cβn3 · 2Tmax) (4)

This method is not exponential in the number of nodes and
therefore is scalable to any size network. However, it can only
plan a limited number of steps ahead (Tmax) before becoming
computationally burdensome.

V. SIMULATION AND RESULTS

A. Simulation Setup

A simulation arena of 100×100 sq. meters with a variable
number of nodes is used. The paths for the nodes are generated
randomly using a goal-based method. First, the origin and
goal of each path are randomly and independently placed in
the arena by a 2D Poisson process. The actual path between
these two points is generated by performing a simulated
random-waypoint walk. The initial direction of the velocity
vector for the node at each waypoint is toward the goal.
A uniformly-distributed random turn of limited-magnitude is
then performed. The path construction completes when the
current waypoint is sufficiently close to the goal or an obstacle
obstructs the path-construction process to the point where the
naive avoidance algorithm is not able to find a path around the
obstacle. Figure 1 shows a typical realization of this process.

The range of communication requirement dmax is chosen
using a parameter m ≥ 0 that is scalable in the number of
nodes and the size of the world:

dmax =
m

π

√
A log n

n
(5)

Where A is the area of the arena and n is the number of nodes.
When m = 1 the network is expected to be asymptotically
connected [17] under similar conditions. When m � 1 the
network is well connected and motion planning is unlikely to
improve the network performance, unless most of the arena is

covered with obstacles. When m ≈ 1, the network is likely
to be partially disconnected and therefore motion planning is
expected to show improvement. When m� 1, the granularity
of the movement graph is greater than dmax and therefore
motion planning is likely to be unable to improve connectivity.

B. Algorithm Performance

We analyzed the scalability of the noncooperative and coop-
erative methods in relation to the number of nodes and to the
search depth. The complexity bounds presented in Section IV-
D showed that cooperative methods should be exponentially
faster in n and significantly faster in the search depth. This was
also observed in simulation. The running time for a scenario
with 5 nodes and search depth of 3 was 98 seconds for the
cooperative method and 0.04 seconds for the noncooperative
method. The average was taken from 200 simulation runs of
the former and 10000 runs from latter.

C. Cooperative vs. Noncooperative Search

Noncooperative search is scalable and computationally ef-
ficient, however, in order for it to be a viable alternative
for the optimal cooperative method it must perform well
relative to the cooperative case. We ran a simulation for each
method with n = 3 nodes and τ = 0, 1, ..., 4. A small-scale
network example was used because of the costly running-time
complexity of cooperative method. The connectivity parameter
m was kept constant at 0.4. Figure 3 shows the results of
the simulation. As τ increases, the improvement in average
connectivity also increases to over 80% for τ = 4. Most
importantly, the plot shows that the average performance of
the more efficient noncooperative method is near-optimal,
therefore, validating it as good approximation for the policies
generated by the cooperative method. The concave shape of
curve and the small change from τ = 3 to τ = 4 suggests
a convergence in τ . This was investigated further for the
noncooperative method for τ = 5, 6, ..., 12, and in fact for
this method the improvement does converge to about 87%.

D. Improvement vs. Communication Range

The magnitude of network performance benefit that motion
planning can provide depends on the communication range
of the nodes in the network. If each node has a long range,
then the network is mostly connected and therefore allow
for only limited improvement. On the other hand when the
range parameter m is small, and thus the communication
range is short, the network is mostly disconnected. In this
case, it can benefit significantly from motion planning. The
improvement in connectivity, denoted as N , is computed by
taking the difference between the average connectivity for the
march-ahead without stopping policy (when τ = 0) and the
communication-optimal policy (when τ > 0), and dividing
that value by the average connectivity of the τ = 0 policy.

In Figure 4, three different communication ranges are con-
sidered: m = 0.2, 0.4, 0.6. Under each value of the range
parameter, a simulation similar to the one in Section V-C is
run. However, the scale of the network is larger. The simulation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2 2.5 3 3.5 4

Re
la

tiv
e

Im
pr

ov
em

en
t o

f A
ve

ra
ge

 C
on

ne
ct

iv
ity

 (N
)

Travel Time Increase (τ)

 Cooperative
 Noncooperative

Fig. 3. Comparison of connectivity improvement for cooperative and
noncooperative planning method.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8

Im
pr

ov
em

en
t o

f A
ve

ra
ge

 C
on

ne
ct

iv
ity

 (N
)

 m=0.2
 m=0.4
 m=0.6

Travel Time Increase (τ)

Fig. 4. Performance of noncooperative planning algorithm under varying
communication capabilities of network nodes.

is of n = 20 nodes, and for τ = 0, 1, ..., 8. The noncooperative
search was run 10000 times and averaged for each data point
on the plot.

There are three key insights that this scenario provides. First,
as more slack is added to the travel time requirement, move-
ment planning improves the average network performance.
Moreover, the improvement increases approximately linearly
with the magnitude of τ . The plot shows an improvement as
high as 128%. Second, the curve for the values of τ tested
is not concave and does not appear to converge even when
tested up to τ = 22. Therefore, the more time that can
be allowed for the nodes in the network to “wander”, the
better the average performance of the network becomes. Third,
as the connectivity parameter m increases the benefit that
motion planning provides is lessened. Therefore, the classes
of scenarios in which motion planning is most applicable as
those which have poor connectivity.

VI. CONCLUSION

When a set of assets that are part of a communication
network have movement policies that are not constructed with
network performance as the objective, the adjustment of their
movement along those paths based on such an objective can
improve communication. We propose an optimal cooperative
method and an efficient near-optimal noncooperative method
which shows, in simulation, significant improvements in con-
nectivity of the moving network. Both algorithms provides a
Pareto-optimal set of solutions which give a range of choices
between the conflicting objectives of quick travel time and
good communication.

REFERENCES

[1] A. W. Ho and G. C. Fox, “Learning to plan near-optimal collision-
free paths,” in Proceedings of the Fifth Distributed Memory Computing
Conference, vol. I, Applications. Charleston, SC: IEEE, Apr. 1990, pp.
131–139.

[2] A. Mei and Y. Igarashi, “An efficient strategy for robot navigation in
unknown environment,” INFO-PROC-LETT, vol. 52, no. 1, pp. 51–56,
Oct. 1994.

[3] M. J. Mataric, “Parallel, decentralized spatial mapping for robot navi-
gation and path planning,” in PPSN, 1990, pp. 381–386.

[4] Y. Fukazawa, T. Chomchana, J. Ota, H. Yuasa, T. Arai, and H. Asama,
“Region exploration path planning for a mobile robot expressing work-
ing environment by grid points,” in ICRA, 2003, pp. 2448–2454.

[5] M. Jabee, “Robot arm modelling and simulation in a 3d factory
environment.” WSEAS, Sept. 14-17 2003, p. 9. [Online]. Available:
http://www.worldses.org/online/

[6] V. Lumelsky and K. Sun, “A unified methodology for motion planning
with uncertainty for 2D and 3D two-link robot arm manipulators,”
Yale U., Tech. Rep. Systems and Informations Sciences, TR 8805,
Department of Engineering and Applied Science, Yale University, New
Haven Connecticut, January, 1988.

[7] E. Bicho and S. Monteiro, “Formation control for multiple mobile
robots: a non-linear attractor dynamics approach,” in Proceedings of
the 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Las Vegas, NV, October 2003, pp. 2016–2022.

[8] P. K. C. Wang, “Navigation strategies for multiple autonomous mobile
robots moving in formation,” in Proceedings of the IEEE/RSJ Inter-
national Workshop on Intelligent Robots and Systems, Tsukuba, Japan,
September 1989, pp. 486–493.

[9] J. P. Desai, J. Ostrowski, and V. Kumar, “Controlling formations of
multiple mobile robots,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Leuven, Belgium, May 1998,
pp. 2864–2869.

[10] J. P. Desai, P. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 905–908, December 2001.

[11] R. W. Beard and T. W. McLain, “Multiple UAV cooperative search under
collision avoidance and limited range communication constraints,” in
Proceedings of the 42nd IEEE Conference on Decision and Control,
Maui, Hawaii, December 2003, pp. 25–30.

[12] G. A. S. Pereira, A. K. Das, R. V. Kumar, and M. F. M. Campos, “De-
centralized motion planning for multiple robots subject to sensing and
communication constraints,” in Proceedings of the 2003 International
Workshop on Multi-Robot Systems, 2003, pp. 267–278.

[13] D. P. Spanos and R. M. Murray, “Motion planning with wireless network
constraints,” in Proceedings of the 2005 American Control Conference,
Portland, OR, June 2005, pp. 87–92.

[14] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM
Journal on Computing, vol. 1, p. 146, 1972.

[15] Y. Censor, “Pareto optimality in multiobjective problems,” Applied
Mathematics and Optimization, vol. 4, no. 1, pp. 41–59, 1977.

[16] K. R. E., “Artificial intelligence search algorithms,” University of Cal-
ifornia, Los Angeles, Computer Science Department, Technical Report
960029, June 30, 1996.

[17] P. Gupta and P. Kumar, “Critical power for asymptotic connectivity
in wireless networks,” Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of WH Fleming, pp. 547–566, 1998.

